Abstract

Exposure of human hands to harmful levels of vibration can lead to severe injuries. To attenuate these hand transmitted vibrations, a nonlinear vibration absorber inerter (NVAI) is proposed in this work. The proposed NVAI is attached to a coupled nonlinear system of a hand-held impact machine and a hand-arm system. The combined coupled nonlinear system is modeled as a lumped parameter model with a combination of cubic and linear stiffness components, linear viscous dampers, and lumped masses. The governing equations of motion are solved analytically using the method of harmonic balance and validated using numerical simulations. A numerical bifurcation diagram of the system reveals the existence of complex solutions such as quasi-periodic and chaotic attractors. The appearances of quasi-periodic and chaotic attractors are later confirmed by Lyapunov exponents. Further, we explore the ability of the proposed NVAI to decrease the area corresponding to unstable quasi-periodic and chaotic motion in the excitation amplitude–frequency space. This observation further implies the delay in the onset of quasi-periodic and chaotic motion for a range of forcing amplitude using Lyapunov exponents. Finally, parametric analyses are carried out to identify the critical design parameters of the NVAI. These analyses reveal that an increase in the damping, mass, and inertance of the absorber ameliorates the performance of the NVAI. Furthermore, the critical value of the external excitation, corresponding to a sudden change in the response of the system, can be controlled using an appropriate selection of absorber parameters.

References

1.
Griffin
,
M. J.
,
2012
,
Handbook of Human Vibration
,
Academic Press
,
Cambridge, MA
.
2.
Bernard
,
B. P.
, and
Putz-Anderson
,
V.
,
1997
, “
Musculoskeletal Disorders and Workplace Factors; a Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back
,”.
3.
ISO
,
2001
,
Mechanical Vibration-Measurement and Evaluation of Human Exposure to Handtransmitted Vibration - Part 1: General Requirements
,
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 5349–1.
4.
Vihlborg
,
P.
,
Bryngelsson
,
L.
,
Lindgren
,
B.
,
Gunnar Gunnarsson
,
L.
, and
Graff
,
P.
,
2017
, “
Association Between Vibration Exposure and Hand-Arm Vibration Symptoms in a Swedish Mechanical Industry
,”
Int. J. Ind. Ergonom.
,
62
, pp.
77
81
.10.1016/j.ergon.2017.02.010
5.
Dong
,
R. G.
,
Welcome
,
D. E.
,
Xu
,
X.
,
Chen
,
Q.
,
Lin
,
H.
,
McDowell
,
T. W.
, and
Wu
,
J. Z.
,
2018
, “
A Model for Simulating Vibration Responses of Grinding Machine-Workpiece-Hand-Arm Systems
,”
J. Sound Vib.
,
431
, pp.
276
294
.10.1016/j.jsv.2018.06.008
6.
Wu
,
S.-T.
, and
Shao
,
Y.-J.
,
2007
, “
Adaptive Vibration Control Using a Virtual-Vibration-Absorber Controller
,”
J. Sound Vib.
,
305
(
4–5
), pp.
891
903
.10.1016/j.jsv.2007.04.046
7.
Sims
,
N. D.
,
2007
, “
Vibration Absorbers for Chatter Suppression: A New Analytical Tuning Methodology
,”
J. Sound Vib.
,
301
(
3–5
), pp.
592
607
.10.1016/j.jsv.2006.10.020
8.
Jang
,
S.-J.
,
Brennan
,
M. J.
,
Rustighi
,
E.
, and
Jung
,
H.-J.
,
2012
, “
A Simple Method for Choosing the Parameters of a Two Degree-of-Freedom Tuned Vibration Absorber
,”
J. Sound Vib.
,
331
(
21
), pp.
4658
4667
.10.1016/j.jsv.2012.05.020
9.
Frahm
,
H.
, April 18
1911
, “
Device for Damping Vibrations of Bodies
,” US Patent No. 989,958.
10.
Hao
,
K. Y.
, and
Ripin
,
Z. M.
,
2013
, “
Nodal Control of Grass Trimmer Handle Vibration
,”
Int. J. Ind. Ergonom.
,
43
(
1
), pp.
18
30
.10.1016/j.ergon.2012.10.007
11.
Liu
,
W. B.
,
Dai
,
H. L.
, and
Wang
,
L.
,
2017
, “
Suppressing Wind-Induced Oscillations of Prismatic Structures by Dynamic Vibration Absorbers
,”
Int. J. Struct. Stabil. Dyn.
,
17
(
6
), p.
1750056
.10.1142/S0219455417500560
12.
Barry
,
O.
, and
Bukhari
,
M.
,
2017
, “
On the Modeling and Analysis of an Energy Harvester Moving Vibration Absorber for Power Lines
,”
ASME
Paper No. DSCC2017-5377.10.1115/DSCC2017-5377
13.
Febbo
,
M.
,
2012
, “
Optimal Parameters and Characteristics of a Three Degree of Freedom Dynamic Vibration Absorber. Journal of Vibration and Acoustics
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021010
.10.1115/1.4004667
14.
Shakeri
,
S.
, and
Samani
,
F. S.
,
2017
, “
Application of Linear and nonlinear vibration absorbers in Micromilling Process in Order to Suppress Regenerative Chatter
,”
Nonlinear Dyn.
,
89
(
2
), pp.
851
862
.10.1007/s11071-017-3488-z
15.
Moradi
,
H.
,
Bakhtiari-Nejad
,
F.
, and
Movahhedy
,
M. R.
,
2008
, “
Tuneable Vibration Absorber Design to Suppress Vibrations: An Application in Boring Manufacturing Process
,”
J. Sound Vib.
,
318
(
12
), pp.
93
108
.10.1016/j.jsv.2008.04.001
16.
Carpineto
,
N.
,
Lacarbonara
,
W.
, and
Vestroni
,
F.
,
2014
, “
Hysteretic Tuned Mass Dampers for Structural Vibration Mitigation
,”
J. Sound Vib.
,
333
(
5
), pp.
1302
1318
.10.1016/j.jsv.2013.10.010
17.
Poovarodom
,
N.
,
Kanchanosot
,
S.
, and
Warnitchai
,
P.
,
2003
, “
Application of Non-Linear Multiple Tuned Mass Dampers to Suppress Man-Induced Vibrations of a Pedestrian Bridge
,”
Earthquake Eng. Struct. Dyn.
,
32
(
7
), pp.
1117
1131
.10.1002/eqe.265
18.
Lacarbonara
,
W.
, and
Cetraro
,
M.
,
2011
, “
Flutter Control of a Lifting Surface Via Visco-Hysteretic Vibration Absorbers
,”
Int. J. Aeronaut. Space Sci.
,
12
(
4
), pp.
331
345
.10.5139/IJASS.2011.12.4.331
19.
Wang
,
M.
,
2011
, “
Feasibility Study of Nonlinear Tuned Mass Damper for Machining Chatter Suppression
,”
J. Sound Vib.
,
330
(
9
), pp.
1917
1930
.10.1016/j.jsv.2010.10.043
20.
Lindell
,
H.
,
Berbyuk
,
V.
,
Josefsson
,
M.
, and
Leó Grétarsson
,
S.
,
2015
, “
Nonlinear Dynamic Absorber to Reduce Vibration in Hand-Held Impact Machines
,”
Proceedings of the International Conference on Engineering Vibration, Ljubljana
, Sept. 7–10, pp.
1530
1539
.
21.
Viguié
,
R.
, and
Kerschen
,
G.
,
2009
, “
Nonlinear Vibration Absorber Coupled to a Nonlinear Primary System: A Tuning Methodology
,”
J. Sound Vib.
,
326
(
3–5
), pp.
780
793
.10.1016/j.jsv.2009.05.023
22.
Habib
,
G.
,
Detroux
,
T.
,
Viguié
,
R.
, and
Kerschen
,
G.
,
2015
, “
Nonlinear Generalization of Den Hartog's Equal-Peak Method
,”
Mech. Syst. Signal Process.
,
52
, pp.
17
28
.10.1016/j.ymssp.2014.08.009
23.
Hoang
,
N.
,
Fujino
,
Y.
, and
Warnitchai
,
P.
,
2008
, “
Optimal Tuned Mass Damper for Seismic Applications and Practical Design Formulas
,”
Eng. Struct.
,
30
(
3
), pp.
707
715
.10.1016/j.engstruct.2007.05.007
24.
De Angelis
,
M.
,
Perno
,
S.
, and
Reggio
,
A.
,
2012
, “
Dynamic Response and Optimal Design of Structures With Large Mass Ratio TMD
,”
Earthquake Eng. Struct. Dyn.
,
41
(
1
), pp.
41
60
.10.1002/eqe.1117
25.
Alabi
,
O.
, and
Barry
,
O.
,
2020
, “
On the Nonlinear Vibration Analysis of a Hand-Held Impact Machine
,” ASME Paper No. DSCC2020-3155.10.1115/DSCC2020-3155
26.
Bae
,
J.-S.
,
Hwang
,
J.-H.
,
Roh
,
J.-H.
,
Kim
,
J.-H.
,
Yi
,
M.-S.
, and
Lim
,
J. H.
,
2012
, “
Vibration Suppression of a Cantilever Beam Using Magnetically Tuned-Mass-Damper
,”
J. Sound Vib.
,
331
(
26
), pp.
5669
5684
.10.1016/j.jsv.2012.07.020
27.
Joubaneh
,
E. F.
, and
Barry
,
O. R.
,
2019
, “
On the Improvement of Vibration Mitigation and Energy Harvesting Using Electromagnetic Vibration Absorber-Inerter: Exact h2 Optimization
,”
ASME J. Vib. Acoust.
,
141
(
6
), p. 061007.10.1115/1.4044303
28.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.10.1002/eqe.1138
29.
Golysheva
,
E. V.
,
Babitsky
,
V. I.
, and
Veprik
,
A. M.
,
2004
, “
Vibration Protection for an Operator of a Hand-Held Percussion Machine
,”
J. Sound Vib.
,
274
(
1–2
), pp.
351
367
.10.1016/j.jsv.2003.05.019
30.
Moon
,
F. C.
, and
Kalmar-Nagy
,
T.
,
2001
, “
Nonlinear Models for Complex Dynamics in Cutting Materials
,”
Philos. Trans. R. Soc. London. Ser. A Math., Phys. Eng. Sci.
,
359
(
1781
), pp.
695
711
.10.1098/rsta.2000.0751
31.
Nayfeh
,
A. H.
,
1986
, “
Perturbation Methods in Nonlinear Dynamics
,”
Lecture Notes in Physics
, Vol.
247
,
Springer
,
Berlin
.10.1007/BFb0107352
32.
Stépán
,
G.
, and
Kalmár-Nagy
,
T.
,
1997
, “
Nonlinear Regenerative Machine Tool Vibrations
,” ASME Paper No. DETC97/VIB-4021.
33.
Dong
,
R. G.
,
Welcome
,
D. E.
,
Wu
,
J. Z.
, and
McDowell
,
T. W.
,
2008
, “
Development of Hand-Arm System Models for Vibrating Tool Analysis and Test Rig Construction
,”
Noise Control Eng. J.
,
56
(
1
), pp.
35
44
.10.3397/1.2835169
34.
Josefsson
,
M.
, and
Grétarsson
,
S. L.
,
2015
, “
Optimisation of a Non-Linear Tuned Vibration Absorber in a Hand-Held Impact Machine
,” Master's thesis,
Chalmers Univeristy of Technology
,
Gothenburg, Sweden
.
35.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
, Vol.
1
,
Springer
,
New York
.
36.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
,
2002
, “
Analytical Solutions to h ∞ and h 2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
.10.1115/1.1456458
37.
Grappasonni
,
C.
,
Habib
,
G.
,
Detroux
,
T.
,
Wang
,
F.
,
Kerschen
,
G.
, and
Jensen
,
J. S.
,
2014
, “
Practical Design of a Nonlinear Tuned Vibration Absorber
,”
Proceedings of the ISMA Conference
, Leuven, Belgium, Sept. 15–19, pp.
3029
3046
.https://www.researchgate.net/publication/269391335_Practical_design_of_a_nonlinear_tuned_vibration_absorber
38.
Wahi
,
P.
,
2005
, “
A Study of Delay Differential Equations with Applications to Machine Tool Vibrations
,” Ph.D. thesis,
Indian Institute of Science
,
Bangalore, India
.
39.
Wolf
,
A.
,
1986
, “
Quantifying Chaos With Lyapunov Exponents
,”
Chaos
, A. V. Holden, Princeton University Press, Princeton, NJ, pp.
273
290
.10.1515/9781400858156.273
40.
Balcerzak
,
M.
,
Pikunov
,
D.
, and
Dabrowski
,
A.
,
2018
, “
The Fastest, Simplified Method of Lyapunov Exponents Spectrum Estimation for Continuous-Time Dynamical Systems
,”
Nonlinear Dyn.
,
94
(
4
), pp.
3053
3065
.10.1007/s11071-018-4544-z
41.
Parker
,
T. S.
, and
Chua
,
L.
,
2012
,
Practical Numerical Algorithms for Chaotic Systems
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.