Abstract
The fractional model of Liénard's equations is very useful in the study of oscillating circuits. The main aim of this article is to investigate a fractional extension of Liénard's equation by using a fractional operator with exponential kernel. A user friendly analytical algorithm is suggested to obtain the solutions of fractional model of Liénard's equation. The considered computational technique is a combination of q-homotopy analysis method and an integral transform approach. The outcomes of the investigation presented in graphical and tabular forms, which reveal that the suggested computational scheme is very accurate and useful for handling such type of fractional order nonlinear mathematical models.
Issue Section:
Research Papers
References
1.
Liénard
,
A.
, 1928
, “
Etude Des Oscillations Entretenues
,” Rev. Gén. Electr.
,
23
, pp. 901
–912
; 946
–954
.2.
Kong
,
D.
, 1995
, “
Explicit Exact Solutions for the Lienard Equation and Its Applications
,” Phys. Lett. A
,
196
, pp. 301
–306
.10.1016/0375-9601(94)00866-N3.
Feng
,
Z.
, 2002
, “
On Explicit Exact Solutions for the Lienard Equation and Its Applications
,” Phys. Lett. A
,
239
, pp. 50
–56
.10.1016/S0375-9601(01)00823-44.
Matinfar
,
M.
,
Hosseinzadeh
,
H.
, and
Ghanbari
,
M.
, 2008
, “
A Numerical Implementation of the Variational Iteration Method for the Lienard Equation
,” World J. Modell. Simul.
,
4
(3
), pp. 205
–210
.5.
Matinfar
,
M.
,
Mahdavi
,
M.
, and
Raeisy
,
Z.
, 2011
, “
Exact and Numerical Solution of Lienard's Equation by the Variational Homotopy Perturbation Method
,” J. Inf. Comput. Sci.
,
6
(1
), pp. 73
–80
.6.
Miller
,
K. S.
, and
Ross
,
B.
, 1993
, An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.7.
Podlubny
,
I.
, 1999
, Fractional Differential Equations
, Vol.
198
,
Academic Press
,
San Diego, CA
, p. 340
.8.
Caputo
,
M.
, 1969
, Elasticita e Dissipazione
,
Zani-Chelli
,
Bologna, Italy
.9.
Singh
,
J.
, 2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,” Chaos, Solitons Fractals
,
140
, p. 110127
.10.1016/j.chaos.2020.11012710.
Caputo
,
M.
, and
Fabrizio
,
M.
, 2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,” Prog. Fractional Differ. Appl.
,
1
, pp. 73
–85
.11.
Caputo
,
M.
, and
Fabrizio
,
M.
, 2021
, “
On the Singular Kernels for Fractional Derivatives. Some Applications to Partial Differential Equations
,” Prog. Fractional Differ. Appl.
,
7
(2
), pp. 79
–82
.12.
Singh
,
J.
,
Kumar
,
D.
, and
Kumar
,
S.
, 2020
, “
An Efficient Computational Method for Local Fractional Transport Equation Occurring in Fractal Porous Media
,” Comput. Appl. Math.
,
39
, p. 137
. 10.1007/s40314-020-01162-213.
Singh
,
J.
,
Ahmadian
,
A.
,
Rathore
,
S.
,
Kumar
,
D.
,
Baleanu
,
D.
,
Salimi
,
M.
, and
Salahshour
,
S.
, 2020
, “
An Efficient Computational Approach for Local Fractional Poisson Equation in Fractal Media
,” Numer. Methods Partial Differ. Equations
,
37
(2
), pp. 1439
–1448
.10.1002/num.2258914.
Yang
,
X. J.
, 2017
, “
A New Integral Transform Operator for Solving the Heat-Diffusion Problem
,” Appl. Math. Lett.
,
64
, pp. 193
–197
.10.1016/j.aml.2016.09.01115.
Losada
,
J.
, and
Nieto
,
J. J.
, 2015
, “
Properties of the New Fractional Derivative Without Singular Kernel
,” Prog. Fractional Differ. Appl.
,
1
, pp. 87
–92
.16.
Atangana
,
A.
, and
Baleanu
,
D.
, 2016
, “
New Fractional Derivative With Nonlocal and Non-Singular Kernel, Theory and Application to Heat Transfer Model
,” Therm. Sci.
,
20
(2
), pp. 763
–769
.10.2298/TSCI160111018A17.
Kumar
,
D.
,
Agarwal
,
R. P.
, and
Singh
,
J.
, 2018
, “
A Modified Numerical Scheme and Convergence Analysis for Fractional Model of Lienard's Equation
,” J. Comput. Appl. Math.
,
339
, pp. 405
–413
.10.1016/j.cam.2017.03.01118.
Liao
,
S. J.
, 2003
, Beyond Perturbation: Introduction to Homotopy Analysis Method
,
Chapman and Hall/CRC Press
,
Boca Raton, FL
.19.
Liao
,
S. J.
, 2004
, “
On the Homotopy Analysis Method for Nonlinear Problems
,” Appl. Math. Comput.
,
147
(2
), pp. 499
–513
.20.
Liao
,
S. J.
, 1995
, “
An Approximate Solution Technique Not Depending on Small Parameters: A Special Example
,” Int. J. Non-Linear Mech.
,
30
(3
), pp. 371
–380
.10.1016/0020-7462(94)00054-E21.
El-Tawil
,
M. A.
, and
Huseen
,
S. N.
, 2012
, “
The q-Homotopy Analysis Method (q-HAM)
,” Int. J. Appl. Math. Mech.
,
8
, pp. 51
–75
.22.
El-Tawil
,
M. A.
, and
Huseen
,
S. N.
, 2013
, “
On Convergence of the q-Homotopy Analysis Method
,” Int. J. Contemp. Math. Sci.
,
8
(10
), pp. 481
–497
.10.12988/ijcms.2013.1304823.
Watugala
,
G. K.
, 1998
, “
Sumudu Transform: A New Integral Transform to Solve Differential Equations and Control Engineering Problems
,” Math. Eng. Ind.
,
6
(4
), pp. 319
–329
.24.
Belgacem
,
F. B. M.
,
Karaballi
,
A. A.
, and
Kalla
,
S. L.
, 2003
, “
Analytical Investigations of the Sumudu Transform and Applications to Integral Production Equations
,” Math. Probl. Eng.
,
3
, pp. 103
–118
.25.
Singh
,
J.
,
Kumar
,
D.
,
Qurashi
,
M. A.
, and
Baleanu
,
D.
, 2017
, “
A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships
,” Entropy
,
19
(7
), p. 375
.10.3390/e1907037526.
Singh
,
J.
,
Kumar
,
D.
,
Baleanu
,
D.
, and
Rathore
,
S.
, 2018
, “
An Efficient Numerical Algorithm for the Fractional Drinfeld-Sokolov-Wilson Equation
,” Appl. Math. Comput.
,
335
, pp. 12
–24
.27.
Odibat
,
Z.
, and
Bataineh
,
S. A.
, 2014
, “
An Adaptation of Homotopy Analysis Method for Reliable Treatment of Strongly Nonlinear Problems: Construction of Homotopy Polynomials
,” Math. Methods Appl. Sci.
,
38
(5
), pp. 991
–1000
10.1002/mma.3136.28.
Qing
,
Y.
, and
Rhoades
,
B. E.
, 2008
, “
T-Stability of Picard Iteration in Metric Spaces
,” Fixed Point Theory Appl.
,
2008
, p. 418971
.10.1155/2008/418971Copyright © 2023 by ASME
You do not currently have access to this content.