Abstract

The control of slewing motion flexible structures is important to a number of systems found in engineering and physical sciences applications, such as aerospace, automotive, robotics, and atomic force microscopy. In this kind of system, the controller must provide a stable and well-damped behavior for the flexible structure vibrations, with admissible control signal amplitudes. Recently, many works have used fractional-order derivatives to model complex and nonlinear dynamical behavior present in the mentioned systems. In order to perform digital computer-based control of fractional-order dynamical systems, a time discretization of the equations is necessary. In many cases, the Grünwald–Letnikov method is used, resulting in an implicit integration method. In this work, a nonlinear slewing motion flexible structure is modeled considering a fractional-order viscous damping in the flexible beam motion. To obtain an explicit integration method, based on the Grünwald–Letnikov definition, the discretization of the dynamical equations is performed considering the existence of sample and hold circuits. In addition, real-time suboptimal infinite horizon tracking control system strategies, namely, the linear quadratic tracking and the state-dependent Riccati equation tracking controller, are designed and implemented to control the fractional-order slewing motion flexible system. The general behavior and performance of the control systems are tested for parameter uncertainties related to the order of the fractional derivatives.

References

1.
Bueno
,
Á. M.
,
Balthazar
,
J. M.
, and
Piqueira
,
J. R. C.
,
2012
, “
Phase-Locked Loops Lock-In Range in Frequency Modulated-Atomic Force Microscope Nonlinear Control System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
3101
3111
.10.1016/j.cnsns.2011.11.023
2.
Abdel-Rahman
,
E. M.
,
Nayfeh
,
A. H.
, and
Masoud
,
Z. N.
,
2003
, “
Dynamics and Control of Cranes: A Review
,”
J. Vib. Control
,
9
(
7
), pp.
863
908
.10.1177/1077546303009007007
3.
Larsen
,
J. W.
,
2005
, “Nonlinear Dynamics of Wind Turbine Wings,” Ph.D. thesis,
Aalborg University
, Aalborg, Denmark.
4.
Altun
,
Y.
,
2018
, “
Gain Scheduling LQI Controller Design for LPV Descriptor Systems and Motion Control of Two-Link Flexible Joint Robot Manipulator
,”
Int. J. Optim. Control Theor. Appl.
,
8
(
2
), pp.
201
207
.10.11121/ijocta.01.2018.00564
5.
Bueno
,
Á. M.
,
Balthazar
,
J. M.
, and
Piqueira
,
J. R. C.
,
2011
, “
Phase-Locked Loop Design Applied to Frequency-Modulated Atomic Force Microscope
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
9
), pp.
3835
3843
.10.1016/j.cnsns.2010.12.018
6.
Komatsu
,
T.
,
Uenohara
,
M.
,
Kura
,
S.
,
Miura
,
H.
, and
Shimoyama
,
I.
,
1991
, “
Active Vibration Control of a Multi-Link Space Flexible Manipulator With Torque Feedback
,”
Adv. Rob.
,
6
(
1
), pp.
23
39
.10.1163/156855391X00368
7.
Lopes
,
G. C.
,
Bueno
,
A. M.
, and
Balthazar
,
J. M.
,
2014
, “
Elastic Beam Vibration Control With Phase-Locked Loop
,”
ASME
Paper No. IMECE2014-36647.10.1115/IMECE2014-36647
8.
Karkoub
,
M.
,
Balas
,
G.
,
Tamma
,
K.
, and
Donath
,
M.
,
2000
, “
Robust Control of Flexible Manipulators Via u-Synthesis
,”
Control Eng. Pract.
,
8
(
7
), pp.
725
734
.10.1016/S0967-0661(00)00006-X
9.
Seto
,
K.
,
2000
, “
A Comparative Study on H-Infinity Based Vibration Controller of a Flexible Structure System
,” Proceedings of American Control Conference ACC (
IEEE Cat. No.00CH36334
), Chicago, IL, Aug. 28–30.10.1109/ACC.2000.878953
10.
Yang
,
F.
,
Sedaghati
,
R.
, and
Esmailzadeh
,
E.
,
2014
, “
Vibration Suppression of Curved Beam-Type Structures Using Optimal Multiple Tuned Mass Dampers
,”
J. Vib. Control
,
20
(
6
), pp.
859
875
.10.1177/1077546312468461
11.
Lima
,
J. J. D.
,
Tusset
,
A. M.
,
Janzen
,
F. C.
,
Piccirillo
,
V.
,
Nascimento
,
C. B.
,
Balthazar
,
J. M.
, and
da Fonseca Brasil
,
R. M. L. R.
,
2016
, “
SDRE Applied to Position and Vibration Control of a Robot Manipulator With a Flexible Link
,”
J. Theor. Appl. Mech.
, 54(4), pp. 1067–1078.10.15632/jtam-pl.54.4.1067
12.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
(Nonlinear Physical Science),
Springer
,
Berlin Heidelberg, Germany
.
13.
Freundlich
,
J. K.
,
2016
, “
Dynamic Response of a Simply Supported Viscoelastic Beam of a Fractional Derivative Type to a Moving Force Load
,”
J. Theor. Appl. Mech.
,
54
(
4
), pp.
1433
1445
.10.15632/jtam-pl.54.4.1433
14.
W., T. Z.
,
2011
, “
Matlab Solutions of Chaotic Fractional Order Circuits
,”
Engineering Education and Research Using MATLAB
,
A. H.
Assi
, ed.,
IntechOpen
,
Rijeka
, Chap.
19
.
15.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2021
, “
New Aspects of Fractional Bloch Model Associated With Composite Fractional Derivative
,”
Math. Model. Nat. Phenom.
,
16
, p.
10
.10.1051/mmnp/2020046
16.
Agarwal
,
R.
,
Kritika
,
Purohit
,
S. D.
, and
Kumar
,
D.
,
2021
, “
Mathematical Modelling of Cytosolic Calcium Concentration Distribution Using Non-Local Fractional Operator
,”
Discrete Contin. Dyn. Syst.
,
14
(
10
), pp.
3387
3399
.10.3934/dcdss.2021017
17.
Sun
,
M.
,
Li
,
Y.
, and
Yao
,
W.
,
2021
, “
A Dynamic Model of Cytosolic Calcium Concentration Oscillations in Mast Cells
,”
Mathematics
,
9
(
18
), p.
2322
.10.3390/math9182322
18.
Singh
,
J.
,
2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,”
Chaos, Solitons Fractals
,
140
, p.
110127
.10.1016/j.chaos.2020.110127
19.
Yan
,
Z.
,
Wang
,
W.
, and
Liu
,
X.
,
2018
, “
Analysis of a Quintic System With Fractional Damping in the Presence of Vibrational Resonance
,”
Appl. Math. Comput.
,
321
, pp.
780
793
.10.1016/j.amc.2017.11.028
20.
2020
, “
Dynamics and Control of Periodic and Non-Periodic Behavior of Duffing Vibrating System With Fractional Damping and Excited by a Non-Ideal Motor
,”
J. Franklin Inst.
,
357
(
4
), pp.
2067
2082
.10.1016/j.jfranklin.2019.11.048
21.
Sinha
,
A.
,
2007
,
Linear Systems: Optimal and Robust Control
,
Taylor & Francis Group
, Boca Raton, FL.
22.
Kirk
,
D.
,
2004
,
Optimal Control Theory: An Introduction
(Dover Books on Electrical Engineering Series),
Dover Publications
, Mineola, NY.
23.
Ogata
,
K.
,
2003
,
Modern Control Engineering
, 4th ed.,
Pearson Prentice Hall
, Hoboken, NJ.
24.
Çimen
,
T.
,
2008
, “
State-Dependent Riccati Equation (SDRE) Control: A Survey
,”
IFAC Proc. Vols.
,
41
(
2
), pp.
3761
3775
.10.3182/20080706-5-KR-1001.00635
25.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
26.
Heymans
,
N.
, and
Podlubny
,
I.
,
2006
, “
Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann-Liouville Fractional Derivatives
,”
Rheol. Acta
,
45
(
5
), pp.
765
771
.10.1007/s00397-005-0043-5
27.
Scherer
,
R.
,
Kalla
,
S. L.
,
Tang
,
Y.
, and
Huang
,
J.
,
2011
, “
The Grünwald–Letnikov Method for Fractional Differential Equations
,”
Comput. Math. Appl.
,
62
(
3
), pp.
902
917
.10.1016/j.camwa.2011.03.054
28.
Vinagre
,
B. M.
,
Chen
,
Y. Q.
, and
Petráš
,
I.
,
2003
, “
Two Direct Tustin Discretization Methods for Fractional-Order Differentiator/Integrator
,”
J. Franklin Inst.
,
340
(
5
), pp.
349
362
.10.1016/j.jfranklin.2003.08.001
29.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(Applied Mathematical Sciences), 2nd ed., Vol.
42
,
Springer
, New York.
30.
Ogata
,
K.
,
1995
,
Discrete-Time Control Systems
, 2nd ed.,
Prentice Hall
, Upper Saddle River, NJ.
31.
Meirovitch
,
L.
,
1970
,
Methods of Analytical Dynamics
,
McGraw-Hill Book Company
, New York.
32.
Alba-Flores
,
R.
, and
Barbieri
,
E.
,
2006
, “
Real-Time Infinite Horizon Linear-Quadratic Tracking Controller for Vibration Quenching in Flexible Beams
,”
IEEE International Conference on Systems, Man and Cybernetics
, Vol.
1
, Taipei, Taiwan, Oct. 8–11, pp.
38
43
.10.1109/ICSMC.2006.384355
33.
Naidu
,
D.
,
2002
,
Optimal Control Systems
(Electrical Engineering Series),
Taylor & Francis
, Boca Raton, FL.
34.
Balhazar
,
J. M.
,
Bassinello
,
D. G.
,
Tusset
,
A. M.
,
Bueno
,
A. M.
, de
Pontes
,
B. R.
, Jr.,
2014
, “
Nonlinear Control in an Electromechanical Transducer With Chaotic Behaviour
,”
Meccanica
,
49
(
8
), pp.
1859
1867
.10.1007/s11012-014-9910-4
35.
Chen
,
C.-T.
,
1999
,
Linear System Theory and Design
, 3rd ed.,
Oxford University Press
, New York.
You do not currently have access to this content.