Abstract

When a nonlinear oscillator array is harmonically excited, specific oscillators in the array may oscillate with large amplitudes. This is known as the localization phenomenon; however, the reason for localization has not been clarified thus far. Thus, the aim of this study is to elucidate the reason for localization in nonlinear oscillator arrays. We theoretically investigated the behavior of a nonlinear oscillator array, which consists of N Duffing oscillators connected by linear springs under external and harmonic forces. The equations of motion in physical coordinates are transformed into modal equations of motion, which reveal that the array forms an autoparametric system in the modal coordinates when it consists of identical oscillators. The first mode of vibration is directly excited by the external force, whereas the remaining modes are indirectly excited by the nonlinear terms coupled with the first mode. The approximate solutions of the harmonic oscillations were obtained using van der Pol's method. The frequency response curves (FRCs) for both the physical and modal coordinates for N = 2 and 3 are presented. Localization can occur when multiple modes are excited simultaneously. Furthermore, the effects of imperfections in the restoring forces on the responses of the two-Duffing-oscillator array are examined.

References

1.
Sievers
,
A. J.
, and
Takeno
,
S.
,
1988
, “
Intrinsic Localized Modes in Anharmonic Crystals
,”
Phys. Rev. Lett.
,
61
(
8
), pp.
970
973
.10.1103/PhysRevLett.61.970
2.
Takeno
,
S.
,
Kisoda
,
K.
, and
Sievers
,
A. J.
,
1988
, “
Intrinsic Localized Vibrational Modes in Anharmonic Crystals: Stationary Modes
,”
Prog. Theor. Phys. Suppl.
,
94
, pp.
242
269
.10.1143/PTPS.94.242
3.
Page
,
J. B.
,
1990
, “
Asymptotic Solutions for Localized Vibrational Modes in Strongly Anharmonic Periodic Systems
,”
Phys. Rev. B
,
41
(
11
), pp.
7835
7838
.10.1103/PhysRevB.41.7835
4.
Flach
,
S.
, and
Willis
,
C. R.
,
1998
, “
Discrete Breathers
,”
Phys. Rep.
,
295
(
5
), pp.
181
264
.10.1016/S0370-1573(97)00068-9
5.
Dauxois
,
T.
,
Peyrard
,
M.
, and
Willis
,
C. R.
,
1993
, “
Discreteness Effects on the Formation and Propagation of Breathers in Nonlinear Klein-Gordon Equations
,”
Phys. Rev. E
,
48
(
6
), pp.
4768
4778
.10.1103/PhysRevE.48.4768
6.
Bang
,
O.
, and
Peyrard
,
M.
,
1996
, “
Generation of High-Energy Localized Vibrational Modes in Nonlinear Klein-Gordon Lattices
,”
Phys. Rev. E
,
53
(
4
), pp.
4143
4152
.10.1103/PhysRevE.53.4143
7.
Sato
,
M.
,
Hubbard
,
B. E.
,
English
,
L. Q.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
,
2003
, “
Study of Intrinsic Localized Vibrational Modes in Micromechanical Oscillator Arrays
,”
Chaos
,
13
(
2
), pp.
702
715
.10.1063/1.1540771
8.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
,
2008
, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
,
54
(
1–2
), pp.
13
29
.10.1007/s11071-007-9288-0
9.
Vakais
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.10.1137/0153016
10.
Vakakis
,
A.
,
Nayfeh
,
T.
, and
King
,
M.
,
1993
, “
A Multiple-Scales Analysis of Nonlinear, Localized Modes in a Cyclic Periodic System
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
388
397
.10.1115/1.2900806
11.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
7
14
.10.1115/1.3636501
12.
Rosenberg
,
R. M.
,
1966
, “
On Nonlinear Vibrations of Systems With Many Degrees of Freedom
,”
Adv. Appl. Mech.
,
9
, pp.
155
242
.10.1016/S0065-2156(08)70008-5
13.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Mikhlin
,
Y. V.
,
Pilipchuk
,
V. N.
, and
Zevin
,
A. A.
,
1996
,
Normal Modes and Localization in Nonlinear Systems
,
Wiley
,
New York
.
14.
Vakakis
,
A. F.
,
King
,
M. E.
, and
Pearlstein
,
A. J.
,
1994
, “
Forced Localization in a Periodic Chain of Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
29
(
3
), pp.
429
447
.10.1016/0020-7462(94)90013-2
15.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
,
7
(
1
), pp.
85
104
.10.1007/BF00045127
16.
Vakakis
,
A. F.
,
1997
, “
Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: An Overview
,”
Mech. Syst. Signal Process.
,
11
(
1
), pp.
3
22
.10.1006/mssp.1996.9999
17.
Emad
,
J.
,
Vakakis
,
A. F.
, and
Miller
,
N.
,
2000
, “
Experimental Nonlinear Localization in a Periodically Forced Repetitive System of Coupled Magnetoelastic Beams
,”
Physica D
,
137
(
1–2
), pp.
192
201
.10.1016/S0167-2789(99)00176-1
18.
Kimura
,
M.
, and
Hikihara
,
T.
,
2009
, “
Coupled Cantilever Array With Tunable on-Site Nonlinearity and Observation of Localized Oscillations
,”
Phys. Lett. A
,
373
(
14
), pp.
1257
1260
.10.1016/j.physleta.2009.02.005
19.
Ikeda
,
T.
,
Harata
,
Y.
, and
Nishimura
,
K.
,
2013
, “
Intrinsic Localized Modes of Harmonic Oscillations in Nonlinear Oscillator Arrays
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041007
.10.1115/1.4023866
20.
Ikeda
,
T.
,
Harata
,
Y.
, and
Nishimura
,
K.
,
2015
, “
Intrinsic Localized Modes of Harmonic Oscillations in Pendulum Arrays Subjected to Horizontal Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021007
.10.1115/1.4028474
21.
Bitar
,
D.
,
Kacem
,
N.
, and
Bouhaddi
,
N.
,
2017
, “
Investigation of Modal Interactions and Their Effects on the Nonlinear Dynamics of a Periodic Coupled Pendulums Chain
,”
Int. J. Mech. Sci.
, 127, pp.
130
141
.10.1016/j.ijmecsci.2016.11.030
22.
Fontanela
,
F.
,
Vizzaccaro
,
A.
,
Auvray
,
J.
,
Niedergesäß
,
B.
,
Grolet
,
A.
,
Salles
,
L.
, and
Hoffmann
,
N.
,
2021
, “
Nonlinear Vibration Localisation in a Symmetric System of Two Coupled Beams
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3417
3428
.10.1007/s11071-020-05760-x
23.
Engels
,
R. C.
, and
Meirovitch
,
L.
,
1978
, “
Response of Periodic Structures by Modal Analysis
,”
J. Sound Vib.
,
56
(
4
), pp.
481
493
.10.1016/0022-460X(78)90290-0
24.
Kerschen
,
G.
,
2014
,
Modal Analysis of Nonlinear Mechanical Systems
,
Springer
,
Wien
.
25.
Georgiades
,
F.
,
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
, and
Ruzzene
,
M.
,
2009
, “
Modal Analysis of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
AIAA J.
,
47
(
4
), pp.
1014
1025
.10.2514/1.40461
26.
Cammarano
,
A.
,
Hill
,
T. L.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Bifurcations of Backbone Curves for Systems of Coupled Nonlinear Two Mass Oscillator
,”
Nonlinear Dyn.
,
77
(
1–2
), pp.
311
320
.10.1007/s11071-014-1295-3
27.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2015
, “
Interpreting the Forced Responses of a Two-Degree-of-Freedom Nonlinear Oscillator Using Backbone Curves
,”
J. Sound Vib.
,
349
, pp.
276
288
.10.1016/j.jsv.2015.03.030
28.
Papangelo
,
A.
,
Fontanela
,
F.
,
Grolet
,
A.
,
Ciavarella
,
M.
, and
Hoffmann
,
N.
,
2019
, “
Multistability and Localization in Forced Cyclic Symmetric Structures Modelled by Weakly-Coupled Duffing Oscillators
,”
J. Sound Vib.
,
440
, pp.
202
211
.10.1016/j.jsv.2018.10.028
29.
Harata
,
Y.
, and
Ikeda
,
T.
,
2019
, “
Modal Analysis to Interpret Localization Phenomena of Harmonic Oscillations in Nonlinear Oscillator Arrays
,”
ASME
Paper No. IDETC2019-97780.10.1115/IDETC2019-97780
30.
Thomson
,
W. T.
,
1993
,
Theory of Vibration With Applications
, 4th ed.,
Prentice Hall
, Upper Saddle River,
NJ
.
31.
Stoker
,
J. J.
,
1950
,
Nonlinear Vibrations in Mechanical and Electrical Systems
,
Interscience
,
New York
.
32.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
33.
Brent
,
R. P.
,
1973
,
Algorithms for Minimization Without Derivatives
,
Prentice Hall
,
Englewood Cliffs, NJ
, Chap.
4
.
34.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley, Inc
.,
New York
.
35.
Thomsen
,
J. J.
,
2003
,
Vibrations and Stability: Advanced Theory, Analysis, and Tools
, 2nd ed.,
Springer
,
Berlin
.
You do not currently have access to this content.