Abstract

A novel approach is developed to approximate the full mass matrix in the rotational-coordinate-based beam formulation, which can improve the efficiency of calculating its inverse in dynamic analyses. While the rotational-coordinate-based beam formulation can reduce numbers of elements and generalized coordinates, its mass matrix is a full matrix, such that corresponding Jacobian matrix is also full, and it is time-consuming to calculate its inverse. To increase efficiency of calculating its inverse, the full mass matrix is approximated in this work. Two approximations are adopted: (1) a double integral is approximated by a single integral; and (2) a full matrix is approximated by a sum of several rank-one matrices. Through this way, the approximate mass matrix can be decomposed as a band-diagonal sparse matrix and multiplication of low-rank matrices, and its inverse can be efficiently calculated using Sherman–Woodbury formula. Through this way, the approximate mass matrix can be efficiently calculated. Several numerical examples are presented to demonstrate the performance of the current approach, and its accuracy and efficiency are analyzed.

References

1.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem—Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.10.1016/0045-7825(85)90050-7
2.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.10.1016/0045-7825(86)90079-4
3.
Zhao
,
Z. H.
, and
Ren
,
G. X.
,
2012
, “
A Quaternion-Based Formulation of Euler–Bernoulli Beam Without Singularity
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1825
1835
.10.1007/s11071-011-0109-0
4.
Ren
,
H.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2018
, “
An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011012
.10.1115/1.4037513
5.
Rathod
,
C.
, and
Shabana
,
A. A.
,
2006
, “
Rail Geometry and Euler Angles
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
264
268
.10.1115/1.2198878
6.
Shabana
,
A. A.
,
2010
, “
Uniqueness of the Geometric Representation in Large Rotation Finite Element Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
044501
.10.1115/1.4001909
7.
Ding
,
J. Y.
,
Wallin
,
M.
,
Wei
,
C.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Use of Independent Rotation Field in the Large Displacement Analysis of Beams
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1829
1843
.10.1007/s11071-014-1252-1
8.
Shabana
,
A. A.
, and
Ling
,
H.
,
2019
, “
Noncommutativity of Finite Rotations and Definitions of Curvature and Torsion
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
9
), p.
091005
.10.1115/1.4043726
9.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometric Interpretation of a Nonlinear Beam Finite Element on the Lie Group SE(3
),”
Arch. Mech. Eng.
,
61
(
2
), pp.
305
329
.10.2478/meceng-2014-0018
10.
Brüls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the Use of Lie Group Time Integrators in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031002
.10.1115/1.4001370
11.
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,”
University of Illinois at Chicago
,
Chicago, IL
,
Report No. MBS96-1-UIC
.
12.
Shabana
,
A. A.
,
2015
, “
Definition of ANCF Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054506
.10.1115/1.4030369
13.
Ren
,
H.
,
2015
, “
A Simple Absolute Nodal Coordinate Formulation for Thin Beams With Large Deformations and Large Rotations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061005
.10.1115/1.4028610
14.
Shabana
,
A. A.
,
2016
, “
ANCF Consistent Rotation-Based Finite Element Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
014502
.10.1115/1.4031292
15.
Ebel
,
H.
,
Matikainen
,
M. K.
,
Hurskainen
,
V. V.
, and
Mikkola
,
A.
,
2017
, “
Higher-Order Beam Elements Based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1075
1091
.10.1007/s11071-016-3296-x
16.
Du
,
X.
,
Du
,
J.
,
Bao
,
H.
,
Chen
,
X.
,
Sun
,
G.
, and
Wu
,
X.
,
2019
, “
Dynamic Analysis of the Deployment for Mesh Reflector Antennas Driven With Variable Length Cables
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
11
), p.
111006
.10.1115/1.4044315
17.
Tan
,
X.
,
Chen
,
G.
, and
Shao
,
H.
,
2020
, “
Modeling and Analysis of Spatial Flexible Mechanical Systems With a Spherical Clearance Joint Based on the LuGre Friction Model
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
1
), p.
011005
.10.1115/1.4045240
18.
Bozorgmehri
,
B.
,
Hurskainen
,
V. V.
,
Matikainen
,
M. K.
, and
Mikkola
,
A.
,
2019
, “
Dynamic Analysis of Rotating Shafts Using the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
453
, pp.
214
236
.10.1016/j.jsv.2019.03.022
19.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.10.1115/1.1410100
20.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
–29
24
.10.1007/s00707-018-2131-5
21.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
359
384
.10.1007/s11044-008-9125-3
22.
Zhu
,
W. D.
,
Ren
,
H.
, and
Xiao
,
C.
,
2011
, “
A Nonlinear Model of a Slack Cable With Bending Stiffness and Moving Ends With Application to Elevator Traveling and Compensation Cables
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041017
.10.1115/1.4003348
23.
Fan
,
W.
,
Zhu
,
W. D.
, and
Ren
,
H.
,
2016
, “
A New Singularity-Free Formulation of a Three-Dimensional Euler–Bernoulli Beam Using Euler Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041013
.10.1115/1.4031769
24.
Fan
,
W.
, and
Zhu
,
W. D.
,
2016
, “
An Accurate Singularity-Free Formulation of a Three-Dimensional Curved Euler–Bernoulli Beam for Flexible Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051001
.10.1115/1.4033269
25.
Fan
,
W.
, and
Zhu
,
W. D.
,
2018
, “
An Accurate Singularity-Free and Locking-Free Formulation of a Three-Dimensional Shear-Deformable Beam Using Euler Parameters
,”
Int. J. Non-Linear Mech.
,
102
, pp.
136
146
.10.1016/j.ijnonlinmec.2017.11.009
26.
Bayo
,
E.
, and
Ledesma
,
R.
,
1996
, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
113
130
.10.1007/BF01833296
27.
Köbis
,
M. A.
, and
Arnold
,
M.
,
2016
, “
Convergence of Generalized-α Time Integration for Nonlinear Systems With Stiff Potential Forces
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
107
125
.10.1007/s11044-015-9495-2
28.
Meyer
,
T.
,
Li
,
P.
, and
Schweizer
,
B.
,
2020
, “
Backward Differentiation Formula and Newmark-Type Index-2 and Index-1 Integration Schemes for Constrained Mechanical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
2
), p.
021006
.10.1115/1.4045505
29.
Deng
,
C. Y.
,
2011
, “
A Generalization of the Sherman–Morrison–Woodbury Formula
,”
Appl. Math. Lett.
,
24
(
9
), pp.
1561
1564
.10.1016/j.aml.2011.03.046
30.
Golub
,
G. H.
, and
Loan
,
C. F. V.
,
2013
,
Matrix Computations
,
The Johns Hopkins University Press
,
Baltimore, MD
.
You do not currently have access to this content.