Abstract

Vibration energy is abundantly present in many natural and artificial systems and can be assembled by various devices, mainly employing the benefits of the piezo-electric and electromagnetic phenomena. In the present article, the electromechanical system with two degrees-of-freedom is considered. An additional element (dynamical vibration absorber or DVA) is attached to the main mass, whose vibrations are to be reduced. The DVA consists of a spring, damping, and piezo-electric elements for energy harvesting. The goal is to reduce the maximal possible responses of the main structure at the vicinity of external 1:1 resonance and at the same time collect energy from the vibration of the system. An analytical approach is proposed to find the solution of the problem. We show that the piezo-electric element allows effective energy harvesting and at the same has a very limited influence on reducing the amplitude of oscillations of the main mass. The theoretical results are confirmed by numerical experiments.

References

1.
Mitcheson
,
P.
,
Yeatman
,
E.
,
Rao
,
G.
,
Holmes
,
A.
, and
Green
,
T.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.10.1109/JPROC.2008.927494
2.
Kazmierski
,
T.
, and
Beeby
,
S.
, eds.,
2011
,
Energy Harvesting Systems Principles, Modeling and Applications
,
Springer
,
Berlin
.
3.
Blokhina
,
E.
,
Aroudi
,
A. E.
,
Alarcon
,
E.
, and
Galayko
,
D.
,
2016
, “
Nonlinearity in Energy Harvesting Systems
,”
Introduction to Vibration Energy Harvesting
,
Springer
,
Berlin
.10.1007/978-3-319-20355-3_1
4.
Shevtsov
,
S.
,
Soloviev
,
A.
,
Parinov
,
I.
,
Cherpakov
,
A.
, and
Chebanenko
,
V.
,
2018
,
Piezoelectric Actuators and Generators for Energy Harvesting
,
Springer
,
Berlin
.
5.
Rafique
,
S.
,
2018
,
Piezoelectric Vibration Energy Harvesting
,
Springer
,
Berlin
.
6.
Beeby
,
S.
,
Tudor
,
M.
, and
White
,
N.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
195
.10.1088/0957-0233/17/12/R01
7.
Adhikari
,
S.
,
Friswell
,
M.
, and
Inman
,
D.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
8.
Sodano
,
H.
,
Inman
,
D.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
205
.10.1177/0583102404043275
9.
Stephen
,
N.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.10.1016/j.jsv.2005.10.003
10.
Galhardi
,
M.
,
Guilherme
,
T.
, and
Junior
,
V.
,
2008
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials and Applications
,”
Proceedings of the 7th Brazilian Conference on Dynamics, Control and Applications
, Vol.
2
, FCT – Unesp at Presidente Prudente, São Paulo, Brasil, May 7–9, pp.
521
530
.
11.
Kumar
,
A.
,
Ali
,
S.
, and
Arockiarajan
,
A.
,
2019
, “
Influence of Piezoelectric Energy Transfer on the Interwell Oscillations of Multistable Vibration Energy Harvesters
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
3
), p.
031001
.10.1115/1.4042139
12.
Cornwell
,
P. J.
,
Goethal
,
J.
,
Kowko
,
J.
, and
Damianakis
,
M.
,
2005
, “
Enhancing Power Harvesting Using a Tuned Auxiliary Structure
,”
J. Intel. Mater. Syst. Struct.
,
16
(
10
), pp.
825
834
.10.1177/1045389X05055279
13.
Guan
,
M.
, and
Liao
,
W.-H.
,
2016
, “
Design and Analysis of a Piezoelectric Energy Harvester for Rotational Motion System
,”
Energy Convers. Manage.
,
111
(
111
), pp.
239
244
.10.1016/j.enconman.2015.12.061
14.
dos Santos
,
C.
,
da Silva
,
M.
, and
Marques
,
F.
,
2019
, “
Optimization of Energy Harvesting From Stall-Induced Oscillations Using the Multidimensional Kriging Metamodel
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
7
), p.
071008
.10.1115/1.4043451
15.
Abdelkefi
,
A.
, and
Nuhait
,
A.
,
2013
, “
Modeling and Performance Analysis of Cambered Wing-Based Piezoaeroelastic Energy Harvesters
,”
Smart Mater. Struct.
,
22
(
9
), p.
095029
.10.1088/0964-1726/22/9/095029
16.
Malaji
,
P. V.
,
Rajarathinam
,
M.
,
Jaiswal
,
V.
,
Ali
,
S. F.
, and
Howard
,
I. M.
,
2019
, “
Energy Harvesting From Dynamic Vibration Pendulum Absorberl
,”
Recent Adv. Struct. Eng.
,
2
(
12
), pp.
467
478
.10.1007/978-981-13-0365-4_40
17.
Barton
,
D.
,
Burrow
,
S.
, and
Clare
,
L.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.10.1115/1.4000809
18.
Zhang
,
Y.
,
Rosa
,
R. D.
,
Zhang
,
J.
,
Alameri
,
M.
, and
Liu
,
K.
,
2016
, “
Energy Harvesting Using a Nonlinear Vibration Absorber
,”
Trans. Can. Soc. Mech. Eng.
,
40
(
2
), p.
085721
.10.1139/tcsme-2016-0017
19.
Lallart
,
M.
,
Yan
,
L.
,
Wu
,
Y.-C.
, and
Guyomar
,
D.
,
2013
, “
Electromechanical Semi-Passive Nonlinear Tuned Mass Damper for Efficient Vibration Damping
,”
J. Sound Vib.
,
332
(
22
), pp.
5696
5709
.10.1016/j.jsv.2013.06.006
20.
Ali
,
S.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041004
.10.1115/1.4007967
21.
Tang
,
X.
, and
Zuo
,
L.
,
2011
, “
Enhanced Vibration Energy Harvesting Using Dual-Mass Systems
,”
J. Sound Vib.
,
330
(
21
), pp.
5199
5209
.10.1016/j.jsv.2011.05.019
22.
Shu
,
Y.
, and
Lien
,
I.
,
2006
, “
Analysis of Power Output for Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
15
(
6
), pp.
1499
1512
.10.1088/0964-1726/15/6/001
23.
Zhu
,
D.
,
Tudor
,
M.
, and
Beeby
,
S.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters”. a Review
,”
Meas. Sci. Tech.
,
21
(
2
), p.
022001
.10.1088/0957-0233/21/2/022001
24.
Brown
,
B.
, and
Singh
,
T.
,
2011
, “
Minimax Design of Vibration Absorbers for Linear Damper Systems
,”
J. Sound Vib.
,
330
(
11
), pp.
2437
2448
.10.1016/j.jsv.2010.12.002
25.
Kundu
,
S.
, and
Nemade
,
H.
,
2016
, “
Modeling and Simulation of a Piezoelectric Vibration Energy Harvester
,”
Procedia Eng.
,
144
(
144
), pp.
568
575
.10.1016/j.proeng.2016.05.043
26.
Du
,
S.
,
Jia
,
Y.
, and
Seshia
,
A.
,
2017
, “
Piezoelectric Vibration Energy Harvesting: A Connection Configuration Scheme to Increase Operational Range and Output Power
,”
J. Intel. Mat. Syst. Struct.
,
28
(
14
), pp.
1905
1915
.10.1177/1045389X16682846
27.
Puzyrov
,
V.
, and
Awrejcewicz
,
J.
,
2017
, “
On the Optimum Absorber Parameters: Revising the Classical Results
,”
J. Theor. Appl. Mech.
,
55
(
3
), pp.
1081
1089
.10.15632/jtam-pl.55.3.1081
28.
Zuppa
,
L.
,
Awrejcewicz
,
J.
,
Losyeva
,
N.
,
Puzyrov
,
V.
, and
Savchenko
,
N.
,
2019
, “
The Use of the Dynamic Vibration Absorber for Energy Harvesting
,”
Theor. Approaches Non-Linear Dyn. Syst.
,
1
(
1
), pp.
11
20
.https://www.researchgate.net/publication/337821852
You do not currently have access to this content.