Abstract

Nonlinear vibrations of the orthotropic nanoplates subjected to an influence of in-plane magnetic field are considered. The model is based on the nonlocal elasticity theory. The governing equations for geometrically nonlinear vibrations use the von Kármán plate theory. Both the stress formulation and the Airy stress function are employed. The influence of the magnetic field is taken into account due to the Lorentz force yielded by Maxwell's equations. The developed approach is based on applying the Bubnov–Galerkin method and reducing partial differential equations to an ordinary differential equation. The effect of the magnetic field, elastic foundation, nonlocal parameter, and plate aspect ratio on the linear frequencies and the nonlinear ratio is illustrated and discussed.

References

1.
Kasuya
,
A.
,
Sasaki
,
Y.
,
Saito
,
Y.
,
Tohji
,
K.
, and
Nishina
,
Y.
,
1997
, “
Evidence for Size-Dependent Discrete Dispersions in Single-Wall Nanotubes
,”
Phys. Rev. Lett.
,
78
(
23
), pp.
4434
4437
.10.1103/PhysRevLett.78.4434
2.
Juhasz
,
J. A.
,
Best
,
S. M.
,
Brooks
,
R.
,
Kawashita
,
M.
,
Miyata
,
N.
,
Kokubo
,
T.
,
Nakamura
,
T.
, and
Bonfield
,
W.
,
2004
, “
Mechanical Properties of Glass-Ceramic A-W-Polyethylene Composites: Effect of Filler Content and Particle Size
,”
Biomaterials
,
25
(
6
), pp.
949
955
.10.1016/j.biomaterials.2003.07.005
3.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Theory of Deformable Bodies
,
A. Herman and Sons
,
Paris, France
.
4.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
415
448
.10.1007/BF00253946
5.
Toupin
,
R. A.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
.10.1007/BF00253945
6.
Koiter
,
W. T.
,
1964
, “
Couple-Stresses in the Theory of Elasticity
,” Nederl. Akad. Wetensch. Proc. Ser. B., 67, pp.
17
44
.
7.
Eringen
,
A. C.
,
1972
, “
Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
(
5
), pp.
425
435
.10.1016/0020-7225(72)90050-X
8.
Lam
,
D. C.
,
Yang
,
F.
,
Chong
,
A. C.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.10.1016/S0022-5096(03)00053-X
9.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
10.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
Cambridge, UK
.
11.
Alijani
,
F.
, and
Amabili
,
M.
,
2014
, “
Non-Linear Vibrations of Shells: A Literature Review From 2003 to 2013
,”
Int. J. Non-Linear Mech.
,
58
, pp.
233
257
.10.1016/j.ijnonlinmec.2013.09.012
12.
Pradhan
,
S. C.
, and
Phadikar
,
J. K.
,
2009
, “
Nonlocal Elasticity Theory for Vibration of Nanoplates
,”
J. Sound Vib.
,
325
(
1–2
), pp.
206
223
.10.1016/j.jsv.2009.03.007
13.
Aghababaei
,
R.
, and
Reddy
,
J. N.
,
2009
, “
Nonlocal Third-Order Shear Deformation Plate Theory With Application to Bending and Vibration of Plates
,”
J. Sound Vib.
,
326
(
1–2
), pp.
277
289
.10.1016/j.jsv.2009.04.044
14.
Analooei
,
H. R.
,
Azhari
,
M.
, and
Heidarpour
,
A.
,
2013
, “
Elastic Buckling and Vibration Analyses of Orthotropic Nanoplates Using Nonlocal Continuum Mechanics and Spline Finite Strip Method
,”
Appl. Math. Modell.
,
37
(
10–11
), pp.
6703
6717
.10.1016/j.apm.2013.01.051
15.
Bastami
,
M.
, and
Behjat
,
B.
,
2017
, “
Ritz Solution of Buckling and Vibration Problem of Nanoplates Embedded in an Elastic Medium
,”
Sigma J. Eng. Nat. Sci.
,
35
(
2
), pp.
285
302
.
16.
Singh
,
P. P.
,
Azam
,
M. S.
, and
Ranjan
,
V.
,
2018
, “
Analysis of Free Vibration of Nano Plate Resting on Winkler Foundation
,”
Vibroengineering Procedia
,
21
, pp.
65
70
.10.21595/vp.2018.20406
17.
Sobhy
,
M.
,
2014
, “
Natural Frequency and Buckling of Orthotropic Nanoplates Resting on Two-Parameter Elastic Foundations With Various Boundary Conditions
,”
J. Mech.
,
30
(
5
), pp.
443
453
.10.1017/jmech.2014.46
18.
Zarei
,
M.
,
Ghalami-Choobar
,
M.
,
Rahimi
,
G. H.
, and
Faghani
,
G. R.
,
2018
, “
Free Vibration Analysis of Non-Uniform Circular Nanoplate
,”
J. Solid Mech.
,
10
(
2
), pp.
400
415
.http://jsm.iau-arak.ac.ir/article_542598.html
19.
Shahidi
,
A. R.
,
Shahidi
,
S.
,
Anjomshoae
,
A.
, and
Raeisi Estabragh
,
E.
,
2016
, “
Vibration Analysis of Orthotropic Triangular Nanoplates Using Nonlocal Elasticity Theory and Galerkin Method
,”
J. Solid Mech.
,
8
(
3
), pp.
679
692
.http://jsm.iau-arak.ac.ir/article_524396.html
20.
Pouresmaeeli
,
S.
,
Ghavanloo
,
E.
, and
Fazelzadeh
,
S. A.
,
2013
, “
Vibration Analysis of Viscoelastic Orthotropic Nanoplates Resting on Viscoelastic Medium
,”
Compos. Struct.
,
96
(
2
), pp.
405
410
.10.1016/j.compstruct.2012.08.051
21.
Mohammadi
,
M.
,
Goodarzi
,
M.
,
Ghayour
,
M.
, and
Alivand
,
S.
,
2012
, “
Small Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-Plane Pre-Load Via Nonlocal Elasticity Theory
,”
J. Solid Mech.
, 4(2), pp.
128
143
.http://jsm.iau-arak.ac.ir/article_514472.html
22.
Farrokhabadi
,
A.
, and
Tavakolian
,
F.
,
2017
, “
Size-Dependent Dynamic Analysis of Rectangular Nanoplates in the Presence of Electrostatic, Casimir and Thermal Forces
,”
Appl. Math. Modell.
,
50
(
10
), pp.
604
620
.10.1016/j.apm.2017.06.017
23.
Murmu
,
T.
,
McCarthy
,
M. A.
, and
Adhikari
,
S.
,
2013
, “
In-Plane Magnetic Field Affected Transverse Vibration of Embedded Single-Layer Graphene Sheets Using Equivalent Nonlocal Elasticity Approach
,”
Compos. Struct.
,
96
(
2
), pp.
57
63
.10.1016/j.compstruct.2012.09.005
24.
Kiani
,
K.
,
2014
, “
Free Vibration of Conducting Nanoplates Exposed to Unidirectional In-Plane Magnetic Fields Using Nonlocal Shear Deformable Plate Theories
,”
Phys. E
57, pp.
179
192
.10.1016/j.physe.2013.10.034
25.
Atanasov
,
M. S.
,
Karličić
,
D.
, and
Kozić
,
P.
,
2017
, “
Forced Transverse Vibrations of an Elastically Connected Nonlocal Orthotropic Double-Nanoplate System Subjected to an In-Plane Magnetic Field
,”
Acta Mech.
,
228
(
6
), pp.
2165
2185
.10.1007/s00707-017-1815-6
26.
Ghorbanpour Arani
,
A. H.
,
Maboudi
,
M. J.
,
Ghorbanpour Arani
,
M. J.
, and
Amir
,
S.
,
2013
, “
2D-Magnetic Field and Biaxiall In-Plane Pre-Load Effects on the Vibration of Double Bonded Orthotropic Graphene Sheets
,”
J. Solid Mech.
,
5
(
2
), pp.
193
205
.
27.
Jomehzadeh
,
E.
,
Noori
,
H. R.
, and
Saidi
,
A. R.
,
2011
, “
The Size-Dependent Vibration Analysis of Micro-Plates Based on a Modified Couple Stress Theory
,”
Phys. E
,
43
(
4
), pp.
877
883
.10.1016/j.physe.2010.11.005
28.
Wang
,
Y.
,
Li
,
F.
,
Jing
,
X.
, and
Wang
,
Y.
,
2015
, “
Nonlinear Vibration Analysis of Double-Layered Nanoplates With Different Boundary Conditions
,”
Phys. Lett. A
, 379, pp.
1532
1537
.10.1016/j.physleta.2015.04.002
29.
Gholami
,
R.
,
Ansari
,
R.
, and
Gholami
,
Y.
,
2018
, “
Nonlocal Large-Amplitude Vibration of Embedded Higher-Order Shear Deformable Multiferroic Composite Rectangular Nanoplates With Different Edge Conditions
,”
J. Intell. Mater. Syst. Struct.
,
29
(
5
), pp.
944
968
.10.1177/1045389X17721377
30.
Setoodeh
,
A.
,
Malekzadeh
,
P.
, and
Vosoughi
,
A.
,
2012
, “
Nonlinear Free Vibration of Orthotropic Graphene Sheets Using Nonlocal Mindlin Plate Theory
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
7
)7, pp.
1896
1906
.10.1177/0954406211428997
31.
Farajpour
,
A.
,
Hairi Yazdi
,
M. R.
,
Rastgoo
,
A.
,
Loghmani
,
M.
, and
Mohammadi
,
M.
,
2016
, “
Nonlocal Nonlinear Plate Model for Large Amplitude Vibration of Magneto-Electro-Elastic Nanoplates
,”
Compos. Struct.
,
140
(
4
), pp.
323
336
.10.1016/j.compstruct.2015.12.039
32.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.10.1063/1.332803
33.
Vol'mir
,
A. S.
,
1972
,
Nonlinear Dynamics of Plates and Shells
,
Nauka
,
Moscow, Russia
.
34.
Kiani
,
K.
,
2014
, “
Revisiting the Free Transverse Vibration of Embedded Single-Layer Graphene Sheets Acted Upon by an In-Plane Magnetic Field
,”
J. Mech. Sci. Technol.
,
28
(
9
), pp.
3511
3516
.10.1007/s12206-014-0811-1
35.
Yamaki
,
N.
,
1961
, “
Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates
,”
ZAMM–J. Appl. Math. Mech.
,
41
(
12
), pp.
501
510
.10.1002/zamm.19610411204
36.
Chu
,
N. H.
,
1956
, “
Influence of Large Amplitudes on Free Flexural Vibrations of Rectangular Elastic Plates
,”
ASME J. Appl. Mech.
,
23
, pp.
532
540
.
37.
Sheikh
,
A. H.
, and
Mukhopadhyay
,
M.
,
1996
, “
Large Amplitude Free Flexural Vibration of Stiffened Plates
,”
AIAA J.
,
34
(
11
), pp.
2377
2383
.10.2514/3.13404
38.
Rao
,
S. R.
,
Sheikh
,
A. H.
, and
Mukhopadhyay
,
M.
,
1993
, “
Large-Amplitude Finite Element Flexural Vibration of Plates/Stiffened Plates
,”
J. Acoust. Soc. Am.
,
93
(
6
), pp.
3250
3257
.10.1121/1.405710
39.
Wang
,
Y.
,
Li
,
F. M.
, and
Wang
,
Y. Z.
,
2015
, “
Nonlinear Vibration of Double Layered Viscoelastic Nanoplates Based on Nonlocal Theory
,”
Phys. E
,
67
, pp.
65
76
.10.1016/j.physe.2014.11.007
You do not currently have access to this content.