The paper presents dynamic optimization methods used to calculate the optimal braking torques applied to wheels of an articulated vehicle in the lane following/changing maneuver in order to prevent a vehicle rollover. In the case of unforeseen obstacles, the nominal trajectory of the articulated vehicle has to be modified, in order to avoid collisions. Computing the objective function requires an integration of the equation of motions of the vehicle in each optimization step. Since it is rather time-consuming, a modification of the classical gradient method—variable metric method (VMM)—was proposed by implementing parallel computing on many cores of computing unit processors. Results of optimization calculations providing stable motion of a vehicle while performing a maneuver and a description and results of parallel computing are presented in this paper.

References

1.
Yedavalli
,
R. K.
,
2010
, “
Robust Stability and Control of Multi-Body Ground Vehicles With Uncertain Dynamics and Failures
,” Ohio State University Research Foundation, Columbus, OH, Technical Report No.
49461-EG
.https://www.semanticscholar.org/paper/Robust-Stability-and-Control-of-Multi-Body-Ground-Yedavalli-Yedavalli/a79b86f9b647023786cc15cc48dc99d16fe1203d
2.
Yao
,
Z.
,
Wang
,
G.
,
Li
,
X.
,
Qu
,
J.
,
Zhang
,
Y.
, and
Yang
,
Y.
,
2014
, “
Dynamic Simulation for the Rollover Stability Performances of Articulated Vehicles
,”
J. Automob. Eng.
,
228
(
7
), pp.
771
783
.
3.
Forkenbrock
,
G. J.
,
Garrot
,
W.
,
Heitz
,
M.
, and
O'Harra
,
B. C.
,
2002
, “
A Comprehensive Experimental Examination of Test Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover—Phase IV of Nhtsa's Light Vehicle Rollover Research Program
,” National Highway Traffic Safety Administration, Washington, DC, Technical Report No.
DOT HS 809 513
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjWwZbyo-DUAhVq0YMKHaGfCc0QFggqMAA&url=https%3A%2F%2Fwww.nhtsa.gov%2FDOT%2FNHTSA%2FNRD%2FMultimedia%2FPDFs%2FVRTC%2Fca%2Fcapubs%2FnhtsarolloverphaseIV.pdf&usg=AFQjCNFN3Ns1Iw5ojLMBheKDuEXUG7JecQ.
4.
Huang
,
H.-H.
,
2009
, “
Controller Design for Stability and Rollover Prevention of Multi-Body Ground Vehicles With Uncertain Dynamics and Faults
,”
Ph.D. thesis
, Graduate School of the Ohio State University, Columbus, OH.https://etd.ohiolink.edu/rws_etd/document/get/osu1253631414/inline
5.
Warwas
,
K.
, and
Augustynek
,
K.
,
2015
, “
Dynamic Optimisation of Articulated Vehicle Motion for Control of Stability in Critical Situation
,”
Eighth IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
(
IDAACS
), Warsaw, Poland, Sept. 24–26, Vol.
1
, pp.
232
237
.
6.
Oberoi
,
D.
,
2011
, “
Enhancing Roll Stability and Directional Performance of Articulated Heavy Vehicles Based on Anti-Roll Control and Design Optimization
,”
Ph.D. thesis
, University of Ontario Institute of Technology, Oshawa, ON, Canada.https://ir.library.dc-uoit.ca/bitstream/10155/215/1/Oberoi_Dhruv.pdf
7.
Lu
,
S.-B.
,
Li
,
Y.-N.
, and
Choi
,
S.-B.
,
2012
, “
Contribution of Chassis Key Subsystems to Rollover Stability Control
,”
Proc. Inst. Mech. Eng. Part D
,
226
(
4
), pp.
479
493
.
8.
Warwas
,
K.
,
2008
, “
Analiza i Sterowanie Ruchem Pojazdów Wieloczłonowych z Uwzgle¸dnieniem Podatności Elementów
,” Ph.D. thesis, Akademia Techniczno-Humanistyczna, Bielsko-Biała, Poland.
9.
Reinders
,
J.
, and
Jeffers
,
J.
,
2015
,
High Performance Parallelism Pearls Volume One: Multicore and Many-Core
,
Elsevier
,
Waltham, MA
.
10.
Leng
,
J.
, and
Sharrock
,
W.
,
2012
,
Handbook of Research on Computational Science and Engineering: Theory and Practice
,
IGI Global
,
Hershey, PA
.
11.
Negrut
,
D.
,
Tasora
,
A.
,
Mazhar
,
H.
,
Heyn
,
T.
, and
Hahn
,
P.
,
2012
, “
Leveraging Parallel Computing in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
95
117
.
12.
Eberhard
,
P.
,
Dignath
,
F.
, and
Kübler
,
L.
,
2003
, “
Parallel Evolutionary Optimization of Multibody Systems With Application to Railway Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
143
164
.
13.
Umbarkar
,
A. J.
,
Joshi
,
M. S.
, and
Hong
,
W.-C.
,
2014
, “
Multithreaded Parallel Dual Population Genetic Algorithm (MPDPGA) for Unconstrained Function Optimizations on Multi-Core System
,”
Appl. Math. Comput.
,
243
, pp.
936
949
.
14.
Augustynek
,
K.
,
Warwas
,
K.
, and
Polański
,
A.
,
2009
, “
Application of the Genetic Algorithms and Distributed Computing in Task of the Reduction of Vibrations of a Satellite
,”
Seventh Conference Computer Methods and Systems
(
CMS
), Krakow, Poland, Nov. 26–27, pp.
237
242
.
15.
Jutty
,
K.
,
Bhat
,
M. S.
, and
Ghose
,
D.
,
2000
, “
Performance of Parallel Shooting Method for Closed Loop Guidance of an Optimal Launch Vehicle Trajectory
,”
Optim. Eng.
,
1
(
4
), pp.
399
435
.
16.
Kubica
,
B. J.
, and
Woźniak
,
A.
,
2010
, “
Optimization of the Multi-Threaded Interval Algorithm for the Pareto-Set Computation
,”
J. Telecommun. Inf. Technol.
,
1
, pp.
70
75
.http://dlibra.itl.waw.pl/dlibra-webapp/dlibra/docmetadata?id=773&from=publication&language=en
17.
Kozola
,
S.
,
2009
, “
Improving Optimization Performance With Parallel Computing
,” MathWorks, Natick, MA, accessed June 28, 2017, https://www.mathworks.com/company/newsletters/articles/improving-optimization-performance-with-parallel-computing.html
18.
Dopico
,
D.
,
Zhu
,
Y.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2014
, “
Direct and Adjoint Sensitivity Analysis of Ordinary Differential Equation Multibody Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011012
.
19.
Zhu
,
Y.
,
Dopico
,
D.
,
Sandu
,
C.
, and
Sandu
,
A.
,
2015
, “
Dynamic Response Optimization of Complex Multibody Systems in a Penalty Formulation Using Adjoint Sensitivity
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031009
.
20.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
(Solid Mechanics and Its Applications),
Springer
,
New York
.
21.
Tengler
,
S.
,
2012
, “
Analiza Dynamiki Samochodów Specjalnych o Wysoko Położonym Środku cie¸żkości
,” Ph.D. thesis, Wydział Budowy Maszyn i Informatyki, Akademia Techniczno-Humanistyczna, Bielsko-Biała, Poland.
22.
Chong
,
E.
, and
Zak
,
S.
,
2013
,
An Introduction to Optimization
, 4th ed.,
Wiley
,
New York
.
23.
Rao
,
S.
,
2009
,
Engineering Optimization: Theory and Practice
, 4th ed.,
Wiley
, Hoboken, NJ.
24.
Luksan
,
L.
, and
Spedicato
,
E.
,
2000
, “
Variable Metric Methods for Unconstrained Optimization and Nonlinear Least Squares
,”
J. Comput. Appl. Math.
,
124
(
1–2
), pp.
61
95
.
25.
Press
,
W.
,
Teukolsky
,
S.
,
Vetterling
,
W.
, and
Flannery
,
B.
,
2007
, “
Numerical Recipes 3rd Edition: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.