The finite-element approach of absolute nodal coordinate formulation (ANCF) is a possible way to simulate the deployment dynamics of a large-scale mesh reflector of satellite antenna. However, the large number of finite elements of ANCF significantly increases the dimension of the dynamic equations for the deployable mesh reflector and leads to a great challenge for the efficient dynamic simulation. A new parallel computation methodology is proposed to solve the differential algebraic equations for the mesh reflector multibody system. The mesh reflector system is first decomposed into several independent subsystems by cutting its joints or finite-element grids. Then, the Schur complement method is used to eliminate the internal generalized coordinates of each subsystem and the Lagrange multipliers for joint constraint equations associated with the internal variables. With an increase of the number of subsystems, the dimension of simultaneous linear equations generated in the numerical solution process will inevitably increase. By using the multilevel decomposition approach, the dimension of the simultaneous linear equations is further reduced. Two numerical examples are used to validate the efficiency and accuracy of the proposed parallel computation methodology. Finally, the dynamic simulation for a 500 s deployment process of a complex AstroMesh reflector with over 190,000 generalized coordinates is efficiently completed within 78 hrs.

References

1.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
.
2.
Tibert
,
A. G.
,
2002
, “
Deployable Tensegrity Structure for Space Applications
,”
Ph.D. dissertation
, Royal Institute of Technology, Stockholm, Sweden.
3.
Li
,
T. J.
,
2012
, “
Deployment Analysis and Control of Deployable Space Antenna
,”
Aerosp. Sci. Technol.
,
18
(
1
), pp.
42
47
.
4.
Neto
,
M. A.
,
Ambrósio
,
J. A. C.
, and
Leal
,
R. P.
,
2005
, “
Composite Materials in Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
50–51
), pp.
6860
6873
.
5.
Ambrósio
,
J. A. C.
,
Neto
,
M. A.
, and
Leal
,
R. P.
,
2007
, “
Optimization of a Complex Flexible Multibody Systems With Composite Materials
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
117
144
.
6.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2000
, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
498
507
.
7.
Mitsugi
,
J.
,
Ando
,
K.
,
Senbokuya
,
Y.
, and
Meguro
,
A.
,
2000
, “
Deployment Analysis of Large Space Antenna Using Flexible Multibody Dynamics Simulation
,”
Acta Astronaut.
,
47
(
1
), pp.
19
26
.
8.
Thomson
,
M. W.
,
1999
, “
The Astromesh Deployable Reflector
,”
IEEE Trans. Antennas Propag.
,
3
, pp.
1516
1535
.
10.
Li
,
P.
,
Liu
,
C.
,
Tian
,
Q.
,
Hu
,
H. Y.
, and
Song
,
Y. P.
,
2015
, “
Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Form Finding and Modal Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041017
.
11.
Zhang
,
Y. Q.
,
Duan
,
B. Y.
, and
Li
,
T. J.
,
2012
, “
A Controlled Deployment Method for Flexible Deployable Space Antennas
,”
Acta Astronaut.
,
81
(
1
), pp.
19
29
.
12.
Ma
,
X. F.
,
Song
,
Y. P.
,
Li
,
Z. J.
,
Li
,
T. J.
,
Wang
,
Z. W.
, and
Deng
,
H. Q.
,
2013
, “
Mesh Reflector Antennas: Form-Finding Analysis Review
,”
AIAA
Paper No. 2013-1576.
13.
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,” University of Illinois at Chicago, Technical Report No. MBS96-1-UIC.
14.
Shabana
,
A. A.
,
1997
, “
Flexible Multi-Body Dynamics Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
15.
Schiehlen
,
W.
,
2007
, “
Research Trends in Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
18
(
1
), pp.
3
13
.
16.
Dibold
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2009
, “
A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), pp.
710
733
.
17.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.
18.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2011
, “
Dynamics of a Large Scale Rigid-Flexible Multibody System Composed of Composite Laminated Plates
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
283
305
.
19.
Li
,
T. J.
, and
Wang
,
Y.
,
2009
, “
Deployment Dynamic Analysis of Deployable Antennas Considering Thermal Effect
,”
Aerosp. Sci. Technol.
,
13
(
4–5
), pp.
210
215
.
20.
Peng
,
Y.
,
Zhao
,
Z. H.
,
Ma
,
Y. H.
,
Yang
,
J. G.
, and
Ren
,
G. X.
,
2014
, “
Flexible Multi-Body Dynamical Simulation of Astromesh Truss Deployment
,”
The 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics
, BEXCO, Busan, Korea.
21.
Melanz
,
D.
,
Khude
,
N.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2013
, “
A Matrix-Free Newton–Krylov Parallel Implicit Implementation of the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011006
.
22.
Serban
,
R.
,
Melanz
,
D.
,
Li
,
A.
,
Stabciulescu
,
I.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2015
, “
A GPU-Based Preconditioned Newton–Krylov Solver for Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
102
(
9
), pp.
1585
1604
.
23.
Smith
,
B.
,
2004
,
Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations
,
Cambridge University Press
,
Cambridge, UK
.
24.
Toselli
,
A.
, and
Widlund
,
O. B.
,
2005
,
Domain Decomposition Methods—Algorithms and Theory
(Springer Series in Computational Mathematics),
Springer
,
New York
.
25.
Khan
,
I. M.
,
Ahn
,
W.
,
Anderson
,
K. S.
, and
De
,
S.
,
2013
, “
A Logarithmic Complexity Floating Frame of Reference Formulation With Interpolating Splines for Articulated Multi-Flexible-Body Dynamics
,”
Int. J. Non Linear Mech.
,
57
(4), pp.
146
153
.
26.
Khan
,
I. M.
, and
Anderson
,
K. S.
,
2015
, “
A Logarithmic Complexity Divide-and-Conquer Algorithm for Multi-Flexible-Body Dynamics Including Large Deformations
,”
Multibody Syst. Dyn.
,
34
(
1
), pp.
81
101
.
27.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
867
875
.
28.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 2: Trees, Loops, and Accuracy
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
876
892
.
29.
Rubinstein
,
M. F.
,
1967
, “
Combined Analysis by Substructures and Recursion
,”
ASCE J. Struct. Div.
,
93
(ST
2
), pp.
231
235
.
30.
Przemieniecki
,
J. S.
,
1963
, “
Matrix Structural Analysis of Substructures
,”
AIAA J.
,
1
(
1
), pp.
138
147
.
31.
Bathe
,
K.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
32.
Kocak
,
S.
, and
Akay
,
H. U.
,
2001
, “
Parallel Schur Complement Method for Large-Scale Systems on Distributed Memory Computers
,”
Appl. Math. Modell.
,
25
(
10
), pp.
873
886
.
33.
Farhat
,
C.
, and
Roux
,
F.-X.
,
1991
, “
A Method of Finite Element Tearing and Interconnecting and Its Parallel Solution Algorithm
,”
Int. J. Numer. Methods Eng.
,
32
(
6
), pp.
1205
1227
.
34.
Farhat
,
C.
, and
Mandel
,
J.
,
1998
, “
The Two-Lever FETI Method for Static and Dynamic Plate Problems Part I: An Optimal Iterative Solver for Biharmonic Systems
,”
Comput. Methods Appl. Mech. Eng.
,
155
(
1–2
), pp.
129
151
.
35.
Farhat
,
C.
,
Pierson
,
K. H.
, and
Lesoinne
,
M.
,
2000
, “
The Second Generation of FETI Methods and Their Application to the Parallel Solution of Large-Scale Linear and Geometrically Nonlinear Structural Analysis Problems
,”
Comput. Methods Appl. Mech. Eng.
,
184
(2–4), pp.
333
374
.
36.
Farhat
,
C.
,
Lesoinne
,
M.
,
LeTallec
,
P.
,
Pierson
,
K.
, and
Rixen
,
D.
,
2001
, “
FETI-DP: A Dual-Primal Unified FETI Method−Part I: A Faster Alternative to the Two-Level FETI Method
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1523
1544
.
37.
Quinn
,
M. J.
,
2004
,
Parallel Programming in C With MPI and OpenMP
,
McGraw-Hill Higher Education
,
Boston, MA
.
38.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three-Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.
39.
Gerstmsyr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.
40.
García De Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge
,
Springer
,
New York
.
41.
Shabana
,
A. A.
,
2010
,
Computational Dynamics
,
Wiley
,
Singapore
.
42.
Bauchau
,
O. A.
,
2010
, “
Parallel Computation Approaches for Flexible Multibody Dynamic Simulations
,”
J. Franklin Inst.
,
347
(
1
), pp.
53
68
.
43.
Cardona
,
A.
,
1989
, “
An Integrated Approach to Mechanism Analysis
,” Ph.D. dissertation, Universite de liege, Liège, Belgium.
44.
Kübler
,
L.
,
Eberhard
,
P.
, and
Geisler
,
J.
,
2003
, “
Flexible Multibody Systems With Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
34
(
1–2
), pp.
31
52
.
45.
Takahashi
,
Y.
, and
Shimizu
,
N.
,
2002
, “
Introduction of Damping Matrix Into Absolute Nodal Coordinate Formulation
,”
Asian Conference on Multibody Dynamics
, pp.
33
40
.
46.
Lee
,
J. W.
,
Kim
,
H. W.
,
Ku
,
H. C.
, and
Wan
,
S. Y.
,
2009
, “
Comparison of External Damping Models in a Large Deformation Problem
,”
J. Sound Vib.
,
325
(
325
), pp.
722
741
.
47.
Hussein
,
B.
,
Negrut
,
D.
, and
Shabana
,
A. A.
,
2008
, “
Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations
,”
Nonlinear Dyn.
,
54
(
4
), pp.
283
296
.
48.
Tian
,
Q.
,
Zhang
,
Y. Q.
,
Chen
,
L. P.
, and
Yang
,
J. Z.
,
2009
, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021009
.
49.
Shabana
,
A. A.
, and
Hussein
,
B.
,
2009
, “
A Two-Loop Sparse Matrix Numerical Integration Procedure for the Solution of Differential/Algebraic Equations: Application to Multibody Systems
,”
J. Sound Vib.
,
327
(
3–5
), pp.
557
563
.
50.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-A Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
51.
Tian
,
Q.
,
2009
, “
Flexible Multibody Dynamics Research and Application Based on the Absolute Nodal Coordinate Method
,” Ph.D. dissertation, Huazhong University of Science and Technology, Wuhan, China.
52.
The HSL Mathematical Software Library, http://www.hsl.rl.ac.uk/index.html
53.
Schenk
,
O.
, and
Gärtner
,
K.
,
2006
, “
On Fast Factorization Pivoting Methods for Symmetric Indefinite Systems
,”
Electron. Trans. Numer. Anal.
,
23
, pp.
158
179
.
54.
Schenk
,
O.
,
Wächter
,
A.
, and
Hagemann
,
M.
,
2007
, “
Matching-Based Preprocessing Algorithms to the Solution of Saddle-Point Problems in Large-Scale Nonconvex Interior-Point Optimization
,”
Comput. Optim. Appl.
,
36
(
2–3
), pp.
321
341
.
55.
Davis
,
T. A.
,
2006
,
Direct Methods for Sparse Linear Systems
,
SIAM
,
Phiadelphia, PA
.
56.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(1), pp.
53
74
.
57.
Bauchau
,
O. A.
,
2010
,
Flexible Multibody System
(Springer Series in Solid Mechanics and Its Applications),
Springer
,
New York
.
58.
George
,
A.
, and
Liu
,
J. W. H.
,
1981
,
Computer Solution of Large Sparse Positive Definite Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
59.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2012
, “
Dynamics and Control of a Spatial Rigid-Flexible Multibody System With Multiple Cylindrical Clearance Joints
,”
Mech. Mach. Theory
,
52
, pp.
106
129
.
You do not currently have access to this content.