Abstract

Variational methods are used to determine the optimal currents that elicit spikes in various phase reductions of neural oscillator models. We show that, for a given reduced neuron model and target spike time, there is a unique current that minimizes a square-integral measure of its amplitude. For intrinsically oscillatory models, we further demonstrate that the form and scaling of this current is determined by the model’s phase response curve. These results reflect the role of intrinsic neural dynamics in determining the time course of synaptic inputs to which a neuron is optimally tuned to respond, and are illustrated using phase reductions of neural models valid near typical bifurcations to periodic firing, as well as the Hodgkin-Huxley equations.

References

1.
Ashwin
,
P.
, and
Swift
,
J.
, 1992, “
The Dynamics of N Weakly Coupled Identical Oscillators
,”
J. Nonlinear Sci.
1432-1467,
2
, pp.
69
108
.
2.
Brown
,
E.
,
Holmes
,
P.
, and
Moehlis
,
J.
, 2003, “
Globally Coupled Oscillator Networks
,” in
Problems and Perspectives in Nonlinear Science: A Celebratory Volume in Honor of Lawrence Sirovich
,
E.
Kaplan
,
J. E.
Marsden
, and
K. R.
Sreenivasan
, eds.,
Springer
, New York, pp.
183
215
.
3.
Cohen
,
A.
,
Holmes
,
P.
, and
Rand
,
R. H.
, 1982, “
The Nature of Coupling Between Segmental Oscillators of the Lamprey Spinal Generator for Locomotion: A Model
,”
J. Math. Biol.
0303-6812,
13
, pp.
345
369
.
4.
Gerstner
,
W.
,
van Hemmen
,
L.
, and
Cowan
,
J.
, 1996, “
What Matters in Neuronal Locking
?”
Neural Comput.
0899-7667,
8
, pp.
1653
1676
.
5.
Ghigliazza
,
R. M.
, and
Holmes
,
P.
, 2004, “
A Minimal Model of a Central Pattern Generator and Motoneurons for Insect Loco-Motion
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
3
(
4
), pp.
671
700
.
6.
Hansel
,
D.
,
Mato
,
G.
, and
Meunier
,
C.
, 1993, “
Phase Dynamics for Weakly Coupled Hodgkin-Huxley Neurons
,”
Europhys. Lett.
0295-5075,
25
(
5
), pp.
367
372
.
7.
Kopell
,
N.
, and
Ermentrout
,
G. B.
, 1990, “
Phase Transitions and Other Phenomena in Chains of Coupled Oscillators
,”
SIAM J. Math. Anal.
0036-1410,
50
, pp.
1014
1052
.
8.
Taylor
,
D.
, and
Holmes
,
P.
, 1998, “
Simple Models for Excitable and Oscillatory Neural Networks
,”
J. Math. Biol.
0303-6812,
37
, pp.
419
446
.
9.
Brown
,
E.
,
Moehlis
,
J.
, and
Holmes
,
P.
, 2004, “
On the Phase Reduction and Response Dynamics of Neural Oscillator Populations
,”
Neural Comput.
0899-7667,
16
, pp.
673
715
.
10.
Brown
,
E.
,
Moehlis
,
J.
,
Holmes
,
P.
,
Clayton
,
E.
,
Rajkowski
,
J.
, and
Aston-Jones
,
G.
, 2004, “
The Influence of Spike Rate and Stimulus Duration on Noradrenergic Neurons
,”
J. Comput. Neurosci.
0923-5313,
17
, pp.
13
29
.
11.
Tass
,
P. A.
, 1999,
Phase Resetting in Medicine and Biology
,
Springer
, New York.
12.
Rieke
,
F.
,
Warland
,
D.
,
de Ruyter van Steveninck
,
R.
, and
Bialek
,
W.
, 1996,
Spikes: Exploring the Neural Code
,
MIT Press
, Cambridge, MA.
13.
Forger
,
D. B.
, and
Paydarfar
,
D.
, 2004, “
Starting, Stopping, and Resetting Biological Oscillators: In Search of Optimal Perturbations
,”
J. Theor. Biol.
0022-5193,
230
, pp.
521
532
.
14.
Tuckwell
,
H.
, and
Feng
,
J.
, 2005, “
Optimal Control of Neuronal Activity
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
018101
.
15.
Winfree
,
A.
, 2001,
The Geometry of Biological Time
, 2nd ed.,
Springer
, New York.
16.
Bryson
,
A.
, and
Ho
,
Y.
, 1975,
Applied Optimal Control
,
Halsted Press
, Washington, DC.
17.
Goldstein
,
H.
, 1980,
Classical Mechanics
, 2nd ed.,
Addison-Wesley
, Reading, MA.
18.
Ermentrout
,
G. B.
, 1996, “
Type I Membranes Phase Resetting Curves, and Synchrony
,”
Neural Comput.
0899-7667,
8
, pp.
979
1001
.
19.
Ermentrout
,
G. B.
, and
Kopell
,
N.
, 1984, “
Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I
,”
SIAM J. Math. Anal.
0036-1410,
15
, pp.
215
237
.
20.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
, 1952, “
A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve
,”
J. Physiol. (London)
0022-3751,
117
, pp.
500
544
.
21.
Ermentrout
,
G. B.
, 2002,
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students
,
SIAM
, Philadelphia.
22.
Herrmann
,
A.
, and
Gerstner
,
W.
, 2001, “
Noise and the PSTH Response to Current Transients: I. General Theory and Application to the Integrate-and-Fire Neuron
,”
J. Comput. Neurosci.
0923-5313,
11
, pp.
135
151
.
23.
Aguera y Arcas
,
B.
,
Fairhall
,
A.
, and
Bialek
,
W.
, 2003, “
Computation in a Single Neuron: Hodgkin and Huxley Revisited
,”
Neural Comput.
0899-7667,
15
, pp.
1715
1749
.
24.
Rothman
,
A.
,
Ho
,
T.-S.
, and
Rabitz
,
H.
, 2006, “
Exploring Level Sets of Quantum Control Landscapes
,”
Phys. Rev. A
1050-2947
73
, p.
053401
.
You do not currently have access to this content.