The spring loaded inverted pendulum model has been shown to accurately model sagittal plane locomotion for a variety of legged animals and has been used as a target for control for higher dimensional robotic implementations. Tuned appropriately, the model exhibits passively stable periodic gaits using either fixed leg touch-down angle or swing-leg retraction leg touch-down protocols. In this work, we examine the performance of the model when model parameters are set to values characteristic of an insect, in particular the cockroach Blaberus discoidalis. While body motions and forces exhibited during a stride are shown to compare well with those observed experimentally, almost all of the resulting periodic gaits are unstable. We therefore develop and analyze a simple adaptive control scheme that improves periodic gait stability properties. Since it is unlikely that neural reflexes can act quickly enough during a stride to effect control, control is applied once per stance phase through appropriate choice of the leg touch-down angle. The control law developed is novel since it achieves gait stabilization solely through a judicious combination of leg lift-off and touch-down angles, instead of utilizing all of the system positions and velocities in full-state feedback control. Implementing the control law improves the stability properties of a large number of periodic gaits and enables movement between stable periodic gaits by changing a single parameter.

1.
Raibert
,
M.
, 1986,
Legged Robots That Balance
,
MIT Press
, Cambridge, MA, pp.
29
80
.
2.
McGeer
,
T.
, 1993, “
Dynamics and Control of Bipedal Locomotion
,”
J. Theor. Biol.
0022-5193,
163
, pp.
277
314
.
3.
Hurmuzlu
,
Y.
, 1993, “
Dynamics of Bipedal Gait, Part II: Stability Analysis of a Planar Five-Link Biped
,”
ASME J. Appl. Mech.
0021-8936,
60
(
2
), pp.
337
343
.
4.
Kuo
,
A.
, 1999, “
Stabilization of Lateral Motion in Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
917
930
.
5.
Collins
,
S.
,
Wisse
,
M.
, and
Ruina
,
A.
, 2001, “
A Three-Dimensional Passive-Dynamic Walking Robot With Two Legs and Knees
,”
Int. J. Robot. Res.
0278-3649,
20
(
2
), pp.
607
615
.
6.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D.
, 2001, “
Rhex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Robot. Res.
0278-3649,
20
(
7
), pp.
616
631
.
7.
Delcomyn
,
F.
, 1991, “
Perturbation of the Motor System in Freely Walking Cockroaches II. The Timing of Motor Activity in Leg Muscles After Amputation of a Middle Leg
,”
J. Exp. Biol.
0022-0949,
156
, pp.
503
517
.
8.
Graham
,
D.
, 1985, “
Pattern and Control of Walking in Insects
,” in
Advances in Insect Physiology
,
18
,
Academic
, London, pp.
31
140
.
9.
Pearson
,
K.
, and
Iles
,
J.
, 1972, “
Nervous Mechanisms Underlying Intersegmental Co-ordination of Leg Movements During Walking in the Cockroach
,”
J. Exp. Biol.
0022-0949,
58
, pp.
725
744
.
10.
Zill
,
S.
, 1985, “
Proprioceptive Feedback and the Control of Cockroach Walking
,” in
Feedback and Motor Control in Invertebrates and Vertebrates
,
W.
Barnes
and
M.
Galdden
, eds.,
Croom Helm
, London, pp.
187
208
.
11.
Saranli
,
U.
, and
Koditschek
,
D.
, 2003, “
Template Based Control of Hexapedal Running
,” in Proc. 2003 IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, May 12–17, Vol.
3
, pp.
1374
1379
.
12.
Blickhan
,
R.
, 1989, “
The Spring-Mass Model for Running and Hopping
,”
J. Biomech.
0021-9290,
11/12
, pp.
1217
1227
.
13.
Blickhan
,
R.
, and
Full
,
R.
, 1993, “
Similarity in Multi-Legged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol., A
0340-7594,
173
, pp.
509
517
.
14.
Seyfarth
,
A.
,
Geyer
,
H.
,
Gunther
,
M.
, and
Blickhan
,
R.
, 2002, “
A Movement Criterion for Running
,”
J. Biomech.
0021-9290,
35
, pp.
649
655
.
15.
Ghigliazza
,
R.
,
Altendorfer
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D.
, 2003, “
A Simply Stabilized Running Model
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
2
(
2
), pp.
187
218
.
16.
Schmitt
,
J.
, and
Holmes
,
P.
, 2000, “
Mechanical Models for Insect Locomotion: Dynamics and Stability in the Horizontal Plane – Theory
,”
Biol. Cybern.
0340-1200,
83
(
6
), pp.
501
515
.
17.
Schmitt
,
J.
, and
Holmes
,
P.
, 2000, “
Mechanical Models for Insect Locomotion: Dynamics and Stability in the Horizontal Plane – Application
,”
Biol. Cybern.
0340-1200,
83
(
6
), pp.
517
527
.
18.
Seipel
,
J.
, and
Holmes
,
P.
, 2005, “
Running in Three Dimensions: Analysis of a Point-Mass Sprung-Leg Model
,”
Int. J. Robot. Res.
0278-3649,
24
(
8
), pp.
657
674
.
19.
Full
,
R.
, and
Tu
,
M.
, 1991, “
Mechanics of a Rapid Running Insect: Two-, Four- and Six-Legged Locomotion
,”
J. Exp. Biol.
0022-0949,
156
, pp.
215
231
.
20.
Farley
,
C.
,
Glashenn
,
J.
, and
McMahon
,
T.
, 1993, “
Running Springs: Speed and Animal Size
,”
J. Exp. Biol.
0022-0949,
185
, pp.
71
86
.
21.
Full
,
R.
,
Blickhan
,
R.
, and
Ting
,
L.
, 1991, “
Leg Design in Hexpedal Runners
,”
J. Exp. Biol.
0022-0949,
158
, pp.
369
390
.
22.
Seyfarth
,
A.
,
Geyer
,
H.
, and
Herr
,
H.
, 2003, “
Swing-Leg Retraction: A Simple Control Model for Stable Running
,”
J. Exp. Biol.
0022-0949,
206
, pp.
2547
2555
.
23.
Schmitt
,
J.
, 2005, “
Simple Feedback Control of Running
,” Lecture Notes on Control and Information Sciences,
Springer-Verlag
, pp.
363
383
.
24.
Schmitt
,
J.
, and
Holmes
,
P.
, 2001, “
Mechanical Models for Insect Locomotion: Stability and Parameter Studies
,”
Physica D
0167-2789,
156
(
1-2
), pp.
139
168
.
25.
McGeer
,
T.
, 1990, “
Passive Bipedal Running
,”
Proc. R. Soc. London, Ser. B
0962-8452,
240
, pp.
107
134
.
26.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1990,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
, New York, pp.
22
32
.
27.
Ting
,
L.
,
Blickhan
,
R.
, and
Full
,
R.
, 1994, “
Dynamic and Static Stability in Hexapedal Runners
,”
J. Exp. Biol.
0022-0949,
197
, pp.
251
269
.
28.
Schmitt
,
J.
,
Garcia
,
M.
,
Razo
,
R.
,
Holmes
,
P.
, and
Full
,
R.
, 2002, “
Dynamics and Stability of Legged Locomotion in the Horizontal Plane: A Test Case Using Insects
,”
Biol. Cybern.
0340-1200,
86
(
5
), pp.
343
353
.
29.
Coleman
,
M.
,
Chatterjee
,
A.
, and
Ruina
,
A.
, 1997, “
Motions of a Rimless Spoked Wheel: A Simple 3d System With Impacts
,”
Dyn. Stab. Syst.
0268-1110,
12
(
3
), pp.
139
169
.
30.
Schwind
,
W.
, and
Koditschek
,
D.
, 2000, “
Approximating the Stance Map of a 2 dof Monoped Runner
,”
J. Nonlinear Sci.
0938-8794,
10
(
5
), pp.
533
568
.
31.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
, 2005, “
Spring Mass Running: Simple Approximate Solution and Application to Gait Stability
,”
J. Theor. Biol.
0022-5193,
232
, pp.
315
328
.
32.
Altendorfer
,
R.
,
Ghigliazza
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D.
, 2002, “
Exploiting Passive Stability for Hierarchical Control
,” in
Proceedings of the Fifth International Conference on Climbing and Walking Robots (CLAWAR 2002)
,
Professional Engineering Publishing Limited
, Paris, France, September 25–27, pp.
81
85
.
You do not currently have access to this content.