In this paper we present stability analysis of a non-linear model for chatter vibration in a drilling operation. The results build our previous work [Stone, E., and Askari, A., 2002, “Nonlinear Models of Chatter in Drilling Processes,” Dyn. Syst., 17(1), pp. 65–85 and Stone, E., and Campbell, S. A., 2004, “Stability and Bifurcation Analysis of a Nonlinear DDE Model for Drilling,” J. Nonlinear Sci., 14(1), pp. 27–57], where the model was developed and the nonlinear stability of the vibration modes as cutting width is varied was presented. Here we analyze the effect of varying cutting depth. We show that qualitatively different stability lobes are produced in this case. We analyze the criticality of the Hopf bifurcation associated with loss of stability and show that changes in criticality can occur along the stability boundary, resulting in extra periodic solutions.

1.
Tlusty
,
J.
, 1986, “
The Dynamics of High-Speed Milling
,”
J. Eng. Ind.
0022-0817,
108
, pp.
59
67
.
2.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
(
1
), pp.
357
362
.
3.
Bayly
,
P. V.
,
Metzler
,
S. A.
,
Schaut
,
A. J.
, and
Young
,
K. A.
, 2001, “
Theory of Torsional Chatter in Twist Drills: Model, Stability Analysis and Comparison to Test
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
552
561
.
4.
Bayly
,
P. V.
,
Young
,
K. A.
, and
Halley
,
J. E.
, 2001, “
Analysis of Tool Oscillation and Hole Roundness Error in a Quasi-Static Model of Reaming
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
387
396
.
5.
Stépán
,
G.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman Group
, Essex, UK.
6.
Stépán
,
G.
, 1998, “
Delay-Differential Equation Models for Machine Tool Chatter
,” in
Dynamics and Chaos in Manufacturing Processes
,
F.
Moon
, ed.,
Wiley
, New York, pp.
165
191
.
7.
Stone
,
E.
, and
Askari
,
A.
, 2002, “
Nonlinear Models of Chatter in Drilling Processes
,”
Dyn. Syst.
1468-9367,
17
(
1
), pp.
65
85
.
8.
Stone
,
E.
, and
Campbell
,
S. A.
, 2004, “
Stability and Bifurcation Analysis of a Nonlinear DDE Model for Drilling
,”
J. Nonlinear Sci.
0938-8794,
14
(
1
), pp.
27
57
.
9.
Campbell
,
S. A.
, and
Bélair
,
J.
, 1995, “
Analytical and Symbolically-Assisted Investigation of Hopf Bifurcations in Delay-Differential Equations
,”
Can. Appl. Math. Q.
,
3
(
2
), pp.
137
154
.
10.
Faria
,
T.
, and
Magalhães
,
L.
, 1995, “
Normal Forms for Retarded Functional Differential Equations With Parameters and Applications to Hopf Bifurcation
,”
JDE
,
122
, pp.
181
200
.
11.
Hale
,
J. K.
, 1985, “
Flows on Center Manifolds for Scalar Functional Differential Equations
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
0308-2105,
101A
, pp.
193
201
.
12.
Wischert
,
W.
,
Wunderlin
,
A.
,
Pelster
,
A.
,
Olivier
,
M.
, and
Groslambert
,
J.
, 1994, “
Delay-Induced Instabilities in Nonlinear Feedback Systems
,”
Phys. Rev. E
1063-651X,
49
(
1
), pp.
203
219
.
13.
Engelborghs
,
K.
,
Luzyanina
,
T.
, and
Samaey
,
G.
, 2001, “DDE-BIFTOOL v2.00: a MATLAB Package for Bifurcation Analysis of Delay Differential Equations,” Report No. 330, Department of Computer Science, K.U. Leuven, Leuven, Belgium.
14.
Tobias
,
S. A.
, 1965,
Machine Tool Vibration
,
Wiley
, New York.
15.
Bhatt
,
S. J.
, and
Hsu
,
C. S.
, 1966, “
Stability Criteria for Second Order Dynamical Systems With Time Lag
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
113
118
.
16.
Campbell
,
S. A.
, 1999, “
Stability and Bifurcation in the Harmonic Oscillator With Multiple Delayed Feedback Loops
,”
Dyn. Cont. Disc. Impul. Sys.
,
5
, pp.
225
235
.
17.
Campbell
,
S. A.
,
Bélair
,
J.
,
Ohira
,
T.
, and
Milton
,
J.
, 1995, “
Limit Cycles, Tori, and Complex Dynamics in Second-Order Differential Equations With Delayed Negative Feedback
,”
J. Dyn. Differ. Equ.
1040-7294,
7
(
1
), pp.
213
236
.
18.
Cooke
,
K. L.
, and
Grossman
,
Z.
, 1982, “
Discrete Delay, Distributed Delay and Stability Switches
,”
J. Math. Anal. Appl.
0022-247X,
86
, pp.
592
627
.
19.
Hsu
,
C. S.
, and
Bhatt
,
S. J.
, 1966, “
Stability Charts for Second-Order Dynamical Systems With Time Lag
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
119
124
.
20.
Merchant
,
M. E.
, 1945, “
Mechanics of the Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
0021-8979,
16
, pp.
267
275
.
21.
Oxley
,
P. L. B.
, 1989,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
, Chichester, England.
22.
Hale
,
J. K.
, and
Verduyn Lunel
,
S. M.
, 1993,
Introduction to Functional Differential Equations
,
Springer-Verlag
, New York, pp.
331
333
.
23.
Kolmanovskii
,
V. B.
, and
Nosov
,
V. R.
, 1986,
Stability of Functional Differential Equations
,
Academic
, London, England.
24.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
, 1993,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
,
Springer-Verlag
, New York, p.
152
.
25.
Ermentrout
,
G. B.
, 2002,
Simulating, Analyzing and Animating Dynamical Systems: A Guide to XPPAUT for Researcher and Students
,
SIAM
, Philadelphia.
26.
Golubitsky
,
M.
, and
Langford
,
W. F.
, 1981, “
Classification and Unfoldings of Degenerate Hopf Bifurcation
,”
JDE
,
41
, pp.
525
546
.
27.
Takens
,
F.
, 1973, “
Unfoldings of Certain Singularities of Vector Fields: Generalized Hopf Bifurcations
,”
JDE
,
14
, pp.
476
493
.
You do not currently have access to this content.