Abstract

The sit-to-stand (STS) movement is a common activity essential for independence and mobility. Traditional methods for assessing STS often involve costly laboratory equipment, limiting their accessibility. This study introduced an economic alternative to the standard motion capture setup. The system presented in this study used an Azure Kinect and a plantar pressure sensor mat to acquire kinematic and kinetic data simultaneously during the STS. The Kinect provided noncontact motion capture, while the pressure sensor array measured ground reaction forces. To address the Kinect’s inherent limitations in capturing extremity movements and the sensor array’s inability to measure tangential forces, algorithms for the correction of lower limb joints and a multisource fusion model were developed. The accuracy of the proposed system was evaluated against a gold standard Vicon motion capture system. The results indicated that the system delivered estimates comparable to reference values for joint angles (r ranging from 0.85 to 0.99), antero-posterior and vertical ground reaction forces (r ranging from 0.81 to 0.98), joint reaction forces of knee and ankle (r ranging from 0.83 to 0.90), and joint moments of hip and ankle (r ranging from 0.77 to 0.82), suggesting that the proposed system can provide vital kinematic and kinetic data for efficient STS analysis. This study offered an accessible and practical solution for monitoring and assessing mobility in various settings.

References

1.
Galli
,
M.
,
Cimolin
,
V.
,
Crivellini
,
M.
, and
Campanini
,
I.
,
2008
, “
Quantitative Analysis of Sit to Stand Movement: Experimental Set-Up Definition and Application to Healthy and Hemiplegic Adults
,”
Gait Posture
,
28
(
1
), pp.
80
85
.10.1016/j.gaitpost.2007.10.003
2.
Kotake
,
T.
,
Dohi
,
N.
,
Kajiwara
,
T.
,
Sumi
,
N.
,
Koyama
,
Y.
, and
Miura
,
T.
,
1993
, “
An Analysis of Sit-to-Stand Movements
,”
Arch. Phys. Med. Rehabil.
,
74
(
10
), pp.
1095
1099
.10.1016/0003-9993(93)90068-L
3.
Xue
,
Q.
,
Wang
,
T.
,
Yang
,
S.
,
Zhou
,
B.
, and
Zhang
,
H.
,
2022
, “
Experimental Study on Sit-to-Stand (STS) Movement: A Systematic Review
,”
Int. J. Intell. Rob. Appl.
,
6
(
1
), pp.
152
170
.10.1007/s41315-021-00188-x
4.
Hirschfeld
,
H.
,
Thorsteinsdottir
,
M.
, and
Olsson
,
E.
,
1999
, “
Coordinated Ground Forces Exerted by Buttocks and Feet Are Adequately Programmed for Weight Transfer During Sit-to-Stand
,”
J. Neurophysiol.
,
82
(
6
), pp.
3021
3029
.10.1152/jn.1999.82.6.3021
5.
Janssen
,
W. G. M.
,
Bussmann
,
J. B. J.
,
Horemans
,
H. L. D.
, and
Stam
,
H. J.
,
2008
, “
Validity of Accelerometry in Assessing the Duration of the Sit-to-Stand Movement
,”
Medical Biol. Eng. Comput.
,
46
(
9
), pp.
879
887
.10.1007/s11517-008-0366-3
6.
Jones
,
G. D.
,
James
,
D. C.
,
Thacker
,
M.
,
Jones
,
E. J.
, and
Green
,
D. A.
,
2016
, “
Sit-to-Walk and Sit-to-Stand-and-Walk Task Dynamics Are Maintained During Rising at an Elevated Seat-Height Independent of Lead-Limb in Healthy Individuals
,”
Gait Posture
,
48
, pp.
226
229
.10.1016/j.gaitpost.2016.06.005
7.
Yoshida
,
K.
,
An
,
Q.
,
Yozu
,
A.
,
Chiba
,
R.
,
Takakusaki
,
K.
,
Yamakawa
,
H.
,
Tamura
,
Y.
,
Yamashita
,
A.
, and
Asama
,
H.
,
2019
, “
Visual and Vestibular Inputs Affect Muscle Synergies Responsible for Body Extension and Stabilization in Sit-to-Stand Motion
,”
Front. Neurosci.
,
12
, p.
1042
.10.3389/fnins.2018.01042
8.
Wade
,
L.
,
Needham
,
L.
,
McGuigan
,
P.
, and
Bilzon
,
J.
,
2022
, “
Applications and Limitations of Current Markerless Motion Capture Methods for Clinical Gait Biomechanics
,”
PeerJ
,
10
, p.
e12995
.10.7717/peerj.12995
9.
Bae
,
K.
,
Lee
,
S.
,
Bak
,
S.-Y.
,
Kim
,
H. S.
,
Ha
,
Y.
, and
You
,
J. H.
,
2024
, “
Concurrent Validity and Test Reliability of the Deep Learning Markerless Motion Capture System During the Overhead Squat
,”
Sci. Rep.
,
14
(
1
), p.
29462
.10.1038/s41598-024-79707-2
10.
Das
,
K.
,
de Paula Oliveira
,
T.
, and
Newell
,
J.
,
2023
, “
Comparison of Markerless and Marker-Based Motion Capture Systems Using 95% Functional Limits of Agreement in a Linear Mixed-Effects Modelling Framework
,”
Sci. Rep.
,
13
(
1
), p.
22880
.10.1038/s41598-023-49360-2
11.
Giansanti
,
D.
,
Maccioni
,
G.
,
Benvenuti
,
F.
, and
Macellari
,
V.
,
2007
, “
Inertial Measurement Units Furnish Accurate Trunk Trajectory Reconstruction of the Sit-to-Stand Manoeuvre in Healthy Subjects
,”
Medical Biol. Eng. Comput.
,
45
(
10
), pp.
969
976
.10.1007/s11517-007-0224-8
12.
Hwang
,
S.
,
Choi
,
S.
,
Lee
,
Y.-S.
, and
Kim
,
J.
,
2021
, “
A Novel Simplified System to Estimate Lower-Limb Joint Moments During Sit-to-Stand
,”
Sensors
,
21
(
2
), p.
521
.10.3390/s21020521
13.
Liu
,
K.
,
Yan
,
J.
,
Liu
,
Y.
, and
Ye
,
M.
,
2018
, “
Noninvasive Estimation of Joint Moments With Inertial Sensor System for Analysis of STS Rehabilitation Training
,”
J. Healthcare Eng.
,
2018
, pp.
1
15
.10.1155/2018/6570617
14.
Bertram
,
J.
,
Krüger
,
T.
,
Röhling
,
H. M.
,
Jelusic
,
A.
,
Mansow-Model
,
S.
,
Schniepp
,
R.
,
Wuehr
,
M.
, and
Otte
,
K.
,
2023
, “
Accuracy and Repeatability of the Microsoft Azure Kinect for Clinical Measurement of Motor Function
,”
Plos One
,
18
(
1
), p.
e0279697
.10.1371/journal.pone.0279697
15.
Ejupi
,
A.
,
Brodie
,
M.
,
Gschwind
,
Y. J.
,
Lord
,
S. R.
,
Zagler
,
W. L.
, and
Delbaere
,
K.
,
2016
, “
Kinect-Based Five-Times-Sit-to-Stand Test for Clinical and In-Home Assessment of Fall Risk in Older People
,”
Gerontology
,
62
(
1
), pp.
118
124
.10.1159/000381804
16.
Jun
,
K.
,
Lee
,
S.
,
Lee
,
D.-W.
, and
Kim
,
M. S.
,
2021
, “
Deep Learning-Based Multimodal Abnormal Gait Classification Using a 3D Skeleton and Plantar Foot Pressure
,”
IEEE Access
,
9
, pp.
161576
161589
.10.1109/ACCESS.2021.3131613
17.
Tölgyessy
,
M.
,
Dekan
,
M.
, and
Chovanec
,
Ľ.
,
2021
, “
Skeleton Tracking Accuracy and Precision Evaluation of Kinect V1, Kinect V2, and the Azure Kinect
,”
Appl. Sci.
,
11
(
12
), p.
5756
.10.3390/app11125756
18.
Jeon
,
W.
,
Jensen
,
J. L.
, and
Griffin
,
L.
,
2019
, “
Muscle Activity and Balance Control During Sit-to-Stand Across Symmetric and Asymmetric Initial Foot Positions in Healthy Adults
,”
Gait Posture
,
71
, pp.
138
144
.10.1016/j.gaitpost.2019.04.030
19.
Van Der Kruk
,
E.
,
Strutton
,
P.
,
Koizia
,
L. J.
,
Fertleman
,
M.
,
Reilly
,
P.
, and
Bull
,
A. M. J.
,
2022
, “
Why Do Older Adults Stand-Up Differently to Young Adults?: Investigation of Compensatory Movement Strategies in Sit-to-Walk
,”
NPJ Aging
,
8
(
1
), p.
13
.10.1038/s41514-022-00094-x
20.
Camomilla
,
V.
,
Cereatti
,
A.
,
Cutti
,
A. G.
,
Fantozzi
,
S.
,
Stagni
,
R.
, and
Vannozzi
,
G.
,
2017
, “
Methodological Factors Affecting Joint Moments Estimation in Clinical Gait Analysis: A Systematic Review
,”
BioMed. Eng. OnLine
,
16
(
1
), p.
106
.10.1186/s12938-017-0396-x
21.
Killen
,
B. A.
,
Falisse
,
A.
,
De Groote
,
F.
, and
Jonkers
,
I.
,
2020
, “
In Silico-Enhanced Treatment and Rehabilitation Planning for Patients With Musculoskeletal Disorders: Can Musculoskeletal Modelling and Dynamic Simulations Really Impact Current Clinical Practice?
,”
Appl. Sci.
,
10
(
20
), p.
7255
.10.3390/app10207255
22.
Robert
,
T.
,
Causse
,
J.
, and
Monnier
,
G.
,
2013
, “
Estimation of External Contact Loads Using an Inverse Dynamics and Optimization Approach: General Method and Application to Sit-to-Stand Maneuvers
,”
J. Biomech.
,
46
(
13
), pp.
2220
2227
.10.1016/j.jbiomech.2013.06.037
23.
Fluit
,
R.
,
Andersen
,
M.
,
Kolk
,
S.
,
Verdonschot
,
N.
, and
Koopman
,
H.
,
2014
, “
Prediction of Ground Reaction Forces and Moments During Various Activities of Daily Living
,”
J. Biomech.
,
47
(
10
), pp.
2321
2329
.10.1016/j.jbiomech.2014.04.030
24.
Shin
,
S. S.
,
An
,
D. H.
, and
Yoo
,
W. G.
,
2018
, “
Comparison of Foot Pressure and Center of Force During Sit-to-Stand and Stand-to-Sit Movements in Older Adults With Good and Poor Visual Acuity
,”
Top. Geriatric Rehabil.
,
34
(
1
), pp.
82
86
.10.1097/TGR.0000000000000133
25.
Houck
,
J.
,
Kneiss
,
J.
,
Bukata
,
S. V.
, and
Puzas
,
J. E.
,
2011
, “
Analysis of Vertical Ground Reaction Force Variables During a Sit to Stand Task in Participants Recovering From a Hip Fracture
,”
Clinical Biomech.
,
26
(
5
), pp.
470
476
.10.1016/j.clinbiomech.2010.12.004
26.
Wan
,
Q.
,
Zhao
,
H.
,
Li
,
J.
, and
Xu
,
P.
,
2021
, “
Hip Positioning and Sitting Posture Recognition Based on Human Sitting Pressure Image
,”
Sensors
,
21
(
2
), p.
426
.10.3390/s21020426
27.
Wang
,
M.
,
Wang
,
X.
,
Fan
,
Z.
,
Chen
,
F.
,
Zhang
,
S.
, and
Peng
,
C.
,
2019
, “
Research on Feature Extraction Algorithm for Plantar Pressure Image and Gait Analysis in Stroke Patients
,”
J. Visual Commun. Image Representation
,
58
, pp.
525
531
.10.1016/j.jvcir.2018.12.017
28.
Rosso
,
C.
,
Schuetz
,
P.
,
Polzer
,
C.
,
Weisskopf
,
L.
,
Studler
,
U.
, and
Valderrabano
,
V.
,
2012
, “
Physiological Achilles Tendon Length and Its Relation to Tibia Length
,”
Clinical J. Sport Med.
,
22
(
6
), pp.
483
487
.10.1097/JSM.0b013e3182639a3e
29.
Li
,
M.
,
Chen
,
S.
,
Chen
,
X.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Tian
,
Q.
,
2019
, “
Symbiotic Graph Neural Networks for 3D Skeleton-Based Human Action Recognition and Motion Prediction
,” accessed Sept. 25, 2024, http://arxiv.org/abs/1910.02212
30.
Liu
,
Z.
,
Zhang
,
H.
,
Chen
,
Z.
,
Wang
,
Z.
, and
Ouyang
,
W.
,
2020
, “
Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
,” Sept. 25, 2024, http://arxiv.org/abs/2003.14111
31.
De Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.10.1016/0021-9290(95)00178-6
32.
Yeung
,
L. F.
,
Cheng
,
K. C.
,
Fong
,
C. H.
,
Lee
,
W. C. C.
, and
Tong
,
K.-Y.
,
2014
, “
Evaluation of the Microsoft Kinect as a Clinical Assessment Tool of Body Sway
,”
Gait Posture
,
40
(
4
), pp.
532
538
.10.1016/j.gaitpost.2014.06.012
33.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Bio-Med. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
34.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Bio-Med. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
35.
Abdullah
,
M.
,
Hulleck
,
A. A.
,
Katmah
,
R.
,
Khalaf
,
K.
, and
El-Rich
,
M.
,
2024
, “
Multibody Dynamics-Based Musculoskeletal Modeling for Gait Analysis: A Systematic Review
,”
J. NeuroEngineering Rehabil.
,
21
(
1
), p.
178
.10.1186/s12984-024-01458-y
36.
Limited
,
V. M. S.
,
2024
, “
Vicon Nexus Reference Guide
,” accessed Mar.
1
,
2024,
https://help.vicon.com/download/attachments/11611993/Vicon%20Nexus%20Reference%20Guide.pdf
37.
Leardini
,
A.
,
Benedetti
,
M.
,
Berti
,
L.
,
Bettinelli
,
D.
,
Nativo
,
R.
, and
Giannini
,
S.
,
2007
, “
Rear-Foot, Mid-Foot and Fore-Foot Motion During the Stance Phase of Gait
,”
Gait Posture
,
25
(
3
), pp.
453
462
.10.1016/j.gaitpost.2006.05.017
38.
Hof
,
A. L.
,
1996
, “
Scaling Gait Data to Body Size
,”
Gait Posture
,
4
(
3
), pp.
222
223
.10.1016/0966-6362(95)01057-2
39.
Scarborough
,
D. M.
,
McGibbon
,
C. A.
, and
Krebs
,
D. E.
,
2007
, “
Chair Rise Strategies in Older Adults With Functional Limitations
,”
J. Rehabil. Res. Develop.
,
44
(
1
), p.
33
.10.1682/JRRD.2005.08.0134
40.
Skals
,
S.
,
Jung
,
M. K.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2017
, “
Prediction of Ground Reaction Forces and Moments During Sports-Related Movements
,”
Multibody Syst. Dyn.
,
39
(
3
), pp.
175
195
.10.1007/s11044-016-9537-4
41.
Bonnet
,
V.
,
Azevedo-Coste
,
C.
,
Robert
,
T.
,
Fraisse
,
P.
, and
Venture
,
G.
,
2017
, “
Optimal External Wrench Distribution During a Multi-Contact Sit-to-Stand Task
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
7
), pp.
987
997
.10.1109/TNSRE.2017.2676465
42.
Etnyre
,
B.
, and
Thomas
,
D. Q.
,
2007
, “
Event Standardization of Sit-to-Stand Movements
,”
Phys. Ther.
,
87
(
12
), pp.
1651
1666
.10.2522/ptj.20060378
43.
Kerr
,
K.
,
White
,
J.
,
Barr
,
D.
, and
Mollan
,
R.
,
1997
, “
Analysis of the Sit-Stand-Sit Movement Cycle in Normal Subjects
,”
Clin. Biomech.
,
12
(
4
), pp.
236
245
.10.1016/S0268-0033(96)00077-0
You do not currently have access to this content.