Abstract

Thermodynamics is a fundamental topic of continuum mechanics and biomechanics, with a wide range of applications to physiological and biological processes. This study addresses two fundamental limitations of current thermodynamic treatments. First, thermodynamics tables distributed online by the U.S. National Institute of Standards and Technology (NIST) report properties of fluids as a function of absolute temperature T and absolute pressure P. These properties include mass density ρ, specific internal energy u, enthalpy h=u+P/ρ, and entropy s. However, formulations of jump conditions across phase boundaries derived from Newton's second law of motion and the first law of thermodynamics employ the gauge pressure p=PPr, where Pr is an arbitrarily selected referential absolute pressure. Interchanging p with P is not innocuous as it alters tabulated NIST values for u while keeping h and s unchanged. Using p for functions of state and governing equations solves the problem with using NIST entries for the specific internal energy u in standard thermodynamics tables and analyses of phase transformation in continuum mechanics. Second, constitutive models for the free energy of fluids, such as water and air, are not typically provided in standard thermodynamics treatments. This study proposes a set of constitutive models and validates them against suitably modified NIST data.

References

1.
Ateshian
,
G. A.
, and
Zimmerman
,
B. K.
,
2022
, “
Continuum Thermodynamics of Constrained Reactive Mixtures
,”
ASME J. Biomech. Eng.
,
144
(
4
), p.
041011
.10.1115/1.4053084
2.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.10.1063/1.1461829
3.
Van Wylen
,
G. J.
, and
Sonntag
,
R. E.
,
1978
,
Fundamentals of Classical Thermodynamics
, 2nd ed.,
Wiley
,
New York
.
4.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
1988
,
Fundamentals of Engineering Thermodynamics
,
Wiley
,
New York
.
5.
Gibbs
,
J. W.
,
Bumstead
,
H. A.
, and
Van Name
,
R. G.
,
1906
,
The Scientific Papers of J. Willard Gibbs
,
Longmans, Green and co
,
New York and Bombay, London
.
6.
Stefan
,
J.
,
1891
, “
Über Die Theorie Der Eisbildung, Insbesondere Über Die Eisbildung im Polarmeere
,”
Ann. Phys.-Berlin
,
278
(
2
), pp.
269
286
.10.1002/andp.18912780206
7.
Schreier
,
S.
,
1982
,
Compressible Flow
,
Wiley
,
New York
.
8.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
1957
,
Elements of Gas Dynamics
,
Wiley
,
New York
.
9.
Truesdell
,
C.
,
1984
, “
Thermodynamics of Homogeneous Processes
,”
Rational Thermodynamics
,
Springer
,
New York
, pp.
59
81
.
10.
Domingos
,
J. J. D.
,
Nina
,
M. N. R.
, and
Whitelaw
,
J. H.
,
1973
,
Foundations of Continuum Thermodynamics
,
Wiley
,
New York
.
11.
Müller
,
I.
,
1985
,
Thermodynamics
,
Pitman
,
Boston, MA
.
12.
Debler
,
W. R.
,
1990
,
Fluid Mechanics Fundamentals
,
Prentice Hall
,
Englewood Cliffs, NJ
.
13.
Fox
,
R. W.
, and
McDonald
,
A. T.
,
1992
,
Introduction to Fluid Mechanics
, 4th ed.,
J. Wiley
,
New York
.
14.
Chorin
,
A. J.
,
1967
, “
The Numerical Solution of the Navier–Stokes Equations for an Incompressible Fluid
,”
Bull. Am. Math. Soc.
,
73
(
6
), pp.
928
931
.10.1090/S0002-9904-1967-11853-6
15.
Brooks
,
A. N.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
16.
Hughes
,
T. J.
,
Scovazzi
,
G.
, and
Tezduyar
,
T. E.
,
2010
, “
Stabilized Methods for Compressible Flows
,”
J. Sci. Comput.
,
43
(
3
), pp.
343
368
.10.1007/s10915-008-9233-5
17.
Ateshian
,
G. A.
,
Shim
,
J. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2018
, “
Finite Element Framework for Computational Fluid Dynamics in FEBio
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
021001
.10.1115/1.4038716
18.
Badam
,
V.
,
Kumar
,
V.
,
Durst
,
F.
, and
Danov
,
K.
,
2007
, “
Experimental and Theoretical Investigations on Interfacial Temperature Jumps During Evaporation
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
276
292
.10.1016/j.expthermflusci.2007.04.006
19.
Persad
,
A. H.
, and
Ward
,
C. A.
,
2016
, “
Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation
,”
Chem. Rev.
,
116
(
14
), pp.
7727
7767
.10.1021/acs.chemrev.5b00511
20.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
21.
Shim
,
J. J.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2019
, “
A Formulation for Fluid–Structure Interactions in FEBio Using Mixture Theory
,”
ASME J. Biomech. Eng.
,
141
(
5
), p.
051010
.10.1115/1.4043031
22.
Shim
,
J. J.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2021
, “
Finite Element Implementation of Biphasic-Fluid Structure Interactions in FEBio
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
091005
.10.1115/1.4050646
23.
Shim
,
J. J.
,
Maas
,
S. A.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2023
, “
Finite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio
,”
ASME J. Biomech. Eng.
,
145
(
9
), p.
091011
.10.1115/1.4062594
24.
Brewster
,
R.
, and
Gebhart
,
B.
,
1988
, “
An Experimental Study of Natural Convection Effects on Downward Freezing of Pure Water
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
331
348
.10.1016/0017-9310(88)90016-6
25.
Brewster
,
R. A.
, and
Gebhart
,
B.
,
1994
, “
The Effects of Supercooling and Freezing on Natural Convection in Seawater
,”
Int. J. Heat Mass Transfer
,
37
(
4
), pp.
543
552
.10.1016/0017-9310(94)90126-0
26.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
27.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
New York
.
28.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.10.1007/BF01262690
29.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
, “
The Classical Field Theories
,”
Encyclopedia of Physics
, Vol.
III
,
Springer-Verlag
,
Berlin
.
30.
Tuschel
,
D.
,
2016
, “
Raman Thermometry
,”
Spectroscopy
,
31
(
12
), pp.
8
13
.https://www.spectroscopyonline.com/view/ramanthermometry
31.
Haase
,
R.
,
1969
,
Thermodynamics of Irreversible Processes
(Addison-Wesley Series in Chemical Engineering),
Addison-Wesley
,
Reading, MA
.
32.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
33.
Kelly
,
P. D.
,
1964
, “
A Reacting Continuum
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
129
153
.10.1016/0020-7225(64)90001-1
34.
Hutter
,
K.
, and
Jöhnk
,
K.
,
2004
,
Continuum Methods of Physical Modeling: Continuum Mechanics, Dimensional Analysis, Turbulence
,
Springer
,
Berlin
.
35.
Eringen
,
A. C.
, and
Ingram
,
J. D.
,
1965
, “
A Continuum Theory of Chemically Reacting Media—I
,”
Int. J. Eng. Sci.
,
3
(
2
), pp.
197
212
.10.1016/0020-7225(65)90044-3
36.
Buratti
,
G.
,
Huo
,
Y.
, and
Müller
,
I.
,
2003
, “
Eshelby Tensor as a Tensor of Free Enthalpy
,”
J. Elasticity
,
72
(
1–3
), pp.
31
42
.10.1023/B:ELAS.0000018777.15755.6d
37.
Truesdell
,
C.
,
1957
, “
Sulle Basi Della Termomeccanica
,”
Rend Accad Lincei
,
22
(
8
), pp.
33
88
.
38.
Bothe
,
D.
, and
Dreyer
,
W.
,
2015
, “
Continuum Thermodynamics of Chemically Reacting Fluid Mixtures
,”
Acta Mech.
,
226
(
6
), pp.
1757
1805
.10.1007/s00707-014-1275-1
39.
Bowen
,
R. M.
,
1968
, “
On the Stoichiometry of Chemically Reacting Materials
,”
Arch. Ration. Mech. Anal.
,
29
(
2
), pp.
114
124
.10.1007/BF00281361
40.
Prud'homme
,
R.
,
2010
,
Flows of Reactive Fluids
, Vol.
94
,
Springer
,
New York
.
41.
Fried
,
E.
,
1995
, “
Energy Release, Friction, and Supplemental Relations at Phase Interfaces
,”
Continuum Mech. Thermodyn.
,
7
(
1
), pp.
111
121
.10.1007/BF01175772
42.
Gray
,
J.
, and
Svendsen
,
B.
,
1997
, “
Interaction Models for Mixtures With Application to Phase Transitions
,”
Int. J. Eng. Sci.
,
35
(
1
), pp.
55
74
.10.1016/S0020-7225(96)00082-1
43.
Svendsen
,
B.
, and
Gray
,
J.
,
1996
, “
Balance Relations for Classical Mixtures Containing a Moving Non-Material Surface With Application to Phase Transitions
,”
Continuum Mech. Thermodyn.
,
8
(
3
), pp.
171
187
.10.1007/BF01181854
44.
Fried
,
E.
, and
Shen
,
A. Q.
,
1999
, “
Generalization of the Stefan Model to Allow for Both Velocity and Temperature Jumps
,”
Continuum Mech. Thermodyn.
,
11
(
5
), pp.
277
296
.10.1007/s001610050124
45.
Danescu
,
A.
,
2004
, “
Generalized Stefan Models Accounting for a Discontinuous Temperature Field
,”
Continuum Mech. Thermodyn.
,
16
(
5
), pp.
427
439
.10.1007/s00161-003-0166-9
46.
Ward
,
C. A.
, and
Duan
,
F.
,
2004
, “
Turbulent Transition of Thermocapillary Flow Induced by Water Evaporation
,”
Phys. Rev. E
,
69
(
5
), p.
056308
.10.1103/PhysRevE.69.056308
You do not currently have access to this content.