Abstract

The Warrior Injury Assessment Manikin (WIAMan) anthropomorphic test device (ATD) has been originally developed to predict and prevent injuries for occupants in military vehicles, in an underbody blast environment. However, its crash performance and biofidelity of the thoracic region have not been explored. The aim of this study was to determine and evaluate the WIAMan thoracic responses in a typical frontal sled test. The 40 kph frontal sled tests were conducted to quantify the WIAMan thoracic kinematics, chest deflection, and belt loads. Comparative biofidelities of the WIAMan thorax and other surrogates, including postmortem human surrogates (PMHSs), Hybrid III, and test device for human occupant restraint (THOR) ATDs, were assessed under comparable testing conditions. The similarities and differences between WIAMan and the other surrogates were compared and analyzed, including the motion of bilateral shoulders and T1, time histories of chest deflections, and belt loads. The CORrelation and Analysis (CORA) ratings were used to evaluate the correlations of thoracic responses between the ATDs and PMHS. Compared to the PMHS and THOR, the WIAMan experienced a similar level of left shoulder forward excursions. Larger chest deflection was exhibited in WIAMan throughout the whole duration of belt compression. Differences were found in belt loads between subject types. Overall, WIAMan had slightly lower CORA scores but showed comparable overall performance. The overall thoracic responses of WIAMan under the frontal sled test were more compliant than HIII, but still reasonable compared with PMHS and THOR. Comprehensive systematic studies on comparative biofidelity of WIAMan and other surrogates under different impact conditions are expected in future research.

References

1.
Albert
,
D. L.
,
Beeman
,
S. M.
, and
Kemper
,
A. R.
,
2018
, “
Assessment of Thoracic Response and Injury Risk Using the Hybrid III, THOR-M, and Post-Mortem Human Surrogates Under Various Restraint Conditions in Full-Scale Frontal Sled Tests
,”
Stapp Car Crash J.
,
62
, pp.
1
65
.10.4271/2018-22-0001
2.
Crandall
,
J. R.
,
Bose
,
D.
,
Forman
,
J.
,
Untaroiu
,
C. D.
,
Arregui-Dalmases
,
C.
,
Shaw
,
C. G.
, and
Kerrigan
,
J. R.
,
2011
, “
Human Surrogates for Injury Biomechanics Research
,”
Clin. Anat.
,
24
(
3
), pp.
362
371
.10.1002/ca.21152
3.
Mertz
,
H. J.
, and
Irwin
,
A. I.
,
2015
, “
Anthropomorphic Test Devices and Injury Risk Assessments
,”
Accidental Injury: Biomechanics and Prevention
,
N.
Yoganandan
,
A. M.
Nahum
, and
J. W.
Melvin
, eds.,
Springer
,
New York
, pp.
83
112
.10.1007/978-1-4939-1732-7_4
4.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Moore
,
J.
,
Schlick
,
M.
,
Humm
,
J.
,
Rinaldi
,
J.
, and
Maiman
,
D. J.
,
2012
, “
Sled Tests Using the THOR-NT Device and Post Mortem Human Surrogates in Frontal Impacts
,” International Research Council on the Biomechanics of Impact (
IRCOBI
),
Dublin, Ireland
, Sept. 12–14, pp.
130
141
.https://trid.trb.org/view/1253327
5.
Salzar
,
R. S.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Greenhalgh
,
P. C.
,
Zhang
,
J. Z.
,
Perry
,
B. J.
, and
McMahon
,
J. A.
,
2021
, “
The Mechanical Response and Tolerance of the Anteriorly-Tilted Human Pelvis Under Vertical Loading
,”
Ann. Biomed. Eng.
,
49
(
11
), pp.
2975
2989
.10.1007/s10439-020-02634-6
6.
Somasundaram
,
K.
,
Zhang
,
L.
,
Sherman
,
D.
,
Begeman
,
P.
,
Lyu
,
D.
, and
Cavanaugh
,
J. M.
,
2019
, “
Evaluating Thoracolumbar Spine Response During Simulated Underbody Blast Impact Using a Total Human Body Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
100
, p.
103398
.10.1016/j.jmbbm.2019.103398
7.
North Atlantic Treaty Organization, 2014, “Procedures for Evaluating the Protection Level of Armoured Vehicles—Mine Threat–Volume 2,”
NATO, Brussels, Belgium, Report No. AEP-55.
8.
McKay
,
B. J.
, and
Bir
,
C. A.
,
2009
, “
Lower Extremity Injury Criteria for Evaluating Military Vehicle Occupant Injury in Underbelly Blast Events
,”
Stapp Car Crash J.
,
53
, pp.
229
249
.10.4271/2009-22-0009
9.
Bailey
,
A. M.
,
Christopher
,
J. J.
,
Salzar
,
R. S.
, and
Brozoski
,
F.
,
2015
, “
Comparison of Hybrid-III and Postmortem Human Surrogate Response to Simulated Underbody Blast Loading
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051009
.10.1115/1.4029981
10.
DePalma
,
R. G.
, and
Hoffman
,
S. W.
,
2018
, “
Combat Blast Related Traumatic Brain Injury (TBI): Decade of Recognition; Promise of Progress
,”
Behav. Brain Res.
,
340
, pp.
102
105
.10.1016/j.bbr.2016.08.036
11.
Salzar
,
R. S.
,
Treichler
,
D.
,
Wardlaw
,
A.
,
Weiss
,
G.
, and
Goeller
,
J.
,
2017
, “
Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads
,”
J. Neurotrauma
,
34
(
8
), pp.
1589
1602
.10.1089/neu.2016.4600
12.
Franklyn
,
M.
, and
Laing
,
S.
,
2016
, “
Evaluation of Military Helmets and Roof Padding on Head Injury Potential From Vertical Impacts
,”
Traffic Inj. Prev.
,
17
(
7
), pp.
750
757
.10.1080/15389588.2016.1146946
13.
Yoganandan
,
N.
,
Moore
,
J.
,
Arun
,
M. W.
, and
Pintar
,
F. A.
,
2014
, “
Dynamic Responses of Intact Post Mortem Human Surrogates From Inferior-to-Superior Loading at the Pelvis
,”
Stapp Car Crash J.
,
58
, pp.
123
143
.10.4271/2014-22-0005
14.
Cernak
,
I.
,
2017
, “
Understanding Blast-Induced Neurotrauma: How Far Have We Come?
,”
Concussion
,
2
(
3
), p.
CNC42
.10.2217/cnc-2017-0006
15.
Zaseck
,
L. W.
,
Orton
,
N. R.
,
Gruber
,
R.
,
Rupp
,
J.
,
Scherer
,
R.
,
Reed
,
M.
, and
Hu
,
J.
,
2017
, “
The Influence of Personal Protection Equipment, Occupant Body Size, and Restraint System on the Frontal Impact Responses of Hybrid III ATDs in Tactical Vehicles
,”
Traffic Inj. Prev.
,
18
(
6
), pp.
642
649
.10.1080/15389588.2017.1282156
16.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
,
Sagara
,
B. M.
,
Demetropoulos
,
C. K.
,
Dooley
,
C. J.
, and
Merkle
,
A. C.
,
2016
, “
Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
Stapp Car Crash J.
,
60
, pp.
199
246
.10.4271/2016-22-0009
17.
Crandall
,
J. R.
,
Kuppa
,
S. M.
,
Klopp
,
G. S.
,
Hall
,
G. W.
,
Pilkey
,
W. D.
, and
Hurwitz
,
S. R.
,
1998
, “
Injury Mechanisms and Criteria for the Human Foot and Ankle Under Axial Impacts to the Foot
,”
Int. J. Crashworthiness
,
3
(
2
), pp.
147
162
.10.1533/cras.1998.0068
18.
Scherer
,
R.
,
Felczak
,
C.
, and
Halstad
,
S.
,
2010
, “
Vehicle and Crash Dummy Response to an Underbelly Blast Event," 54th Stapp Conference (Oral Only), Scottsdale, AZ, Nov. 3–5.
19.
Bir
,
C.
,
Barbir
,
A.
,
Dosquet
,
F.
,
Wilhelm
,
M.
,
van der Horst
,
M.
, and
Wolfe
,
G.
,
2008
, “
Validation of Lower Limb Surrogates as Injury Assessment Tools in Floor Impacts Due to Anti-Vehicular Land Mines
,”
Mil. Med.
,
173
(
12
), pp.
1180
1184
.10.7205/MILMED.173.12.1180
20.
Paquette
,
S.
,
Gordon
,
C.
, and
Bradtmiller
,
B.
,
2009
, “
Army Anthropometric Survey (ANSUR) II Pilot Study: Methods and Summary Statistics
,”
U.S. Army Natick Soldier Research
, Yellow Springs, OH,
Report No. NATICK/TR-09/014.
21.
Reed
,
M. P.
, and
Rupp
,
J. D.
,
2013
, “
An Anthropometric Comparison of Current ATDs With the U.S. Adult Population
,”
Traffic Inj. Prev.
,
14
(
7
), pp.
703
705
.10.1080/15389588.2012.752819
22.
Salzar
,
R. S.
,
2013
, “
Development of Injury Thresholds Pertaining to Under-Body Blasts
,”
University of Virginia Transportation Center for Applied Biomechanics
, Charlottesville, VA, Technical Report No.
USAMRMC, 2013-11.
https://apps.dtic.mil/sti/citations/AD1056603
23.
Baker
,
W. A.
,
Chowdhury
,
M.
, and
Untaroiu
,
C. D.
,
2018
, “
A Finite Element Model of an Anthropomorphic Test Device Lower Limb to Assess Risk of Injuries During Vertical Accelerative Loading
,”
J. Biomech.
,
81
, pp.
104
112
.10.1016/j.jbiomech.2018.09.020
24.
Slykhouse
,
L.
,
Zaseck
,
L. W.
,
Miller
,
C.
,
Humm
,
J. R.
,
Alai
,
A.
,
Kang
,
Y. S.
,
Dooley
,
C.
,
Sherman
,
D.
,
Bigler
,
B.
,
Demetropoulos
,
C. K.
,
Reed
,
M. P.
, and
Rupp
,
J. D.
,
2019
, “
Anatomically-Based Skeletal Coordinate Systems for Use With Impact Biomechanics Data Intended for Anthropomorphic Test Device Development
,”
J. Biomech.
,
92
, pp.
162
168
.10.1016/j.jbiomech.2019.05.032
25.
Barnes
,
D. R.
,
Danelson
,
K. A.
,
Moholkar
,
N. M.
, and
Loftis
,
K. L.
,
2021
, “
Methodology for Evaluation of WIAMan Injury Assessment Reference Curves Using Whole Body Match-Paired Data
,”
Ann. Biomed. Eng.
,
49
(
11
), pp.
3128
3142
.10.1007/s10439-021-02770-7
26.
Ott
,
K. A.
,
Demetropoulos
,
C. K.
,
Luongo
,
M. E.
,
Titus
,
J. M.
,
Merkle
,
A. C.
, and
Drewry
,
D. G.
, 3rd
,
2021
, “
Evaluation of the Whole Body Spine Response to Sub-Injurious Vertical Loading
,”
Ann. Biomed. Eng.
,
49
(
11
), pp.
3099
3117
.10.1007/s10439-020-02656-0
27.
Yoganandan
,
N.
,
DeVogel
,
N.
,
Moore
,
J.
,
Pintar
,
F.
,
Banerjee
,
A.
, and
Zhang
,
J.
,
2020
, “
Human Lumbar Spine Responses From Vertical Loading: Ranking of Forces Via Brier Score Metrics and Injury Risk Curves
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
79
91
.10.1007/s10439-019-02363-5
28.
Klima
,
J.
,
Kang
,
J.
,
Meldrum
,
A.
, and
Pankiewicz
,
S.
,
2017
, “
Neck Injury Response in High Vertical Accelerations and Its Algorithmical Formalization to Mitigate Neck Injuries
,”
Stapp Car Crash J.
,
61
, pp.
211
225
.10.4271/2017-22-0008
29.
Arbogast
,
K. B.
,
Locey
,
C. M.
, and
Zonfrillo
,
M. R.
,
2012
, “
Differences in Thoracic Injury Causation Patterns Between Seat Belt Restrained Children and Adults
,”
Ann. Adv. Automot. Med.
,
56
, pp.
213
221
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503409/
30.
Shaw
,
G.
,
Parent
,
D.
,
Purtsezov
,
S.
,
Lessley
,
D.
,
Crandall
,
J.
,
Kent
,
R.
,
Guillemot
,
H.
,
Ridella
,
S. A.
,
Takhounts
,
E.
, and
Martin
,
P.
,
2009
, “
Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading
,”
Stapp Car Crash J.
,
53
, pp.
1
48
.10.4271/2009-22-0001
31.
Shaw
,
G.
,
Parent
,
D.
,
Purtsezov
,
S.
,
Lessley
,
D.
,
Kerrigan
,
J.
,
Shin
,
J.
,
Crandall
,
J.
,
Zama
,
Y.
,
Ejima
,
S.
,
Kamiji
,
K.
, and
Yasuki
,
T.
,
2009
, “
Quasi-Static and Dynamic Thoracic Loading Tests: Cadaveric Torsos
,” International Research Council on the Biomechanics of Impact (
IRCOBI
),
New York
, Sept. 9–11, pp.
325
348
.http://www.ircobi.org/wordpress/downloads/irc0111/2007/Session7/7_3.pdf
32.
Lessley
,
D. J.
,
Salzar
,
R.
,
Crandall
,
J.
,
Kent
,
R.
,
Bolton
,
J.
,
Bass
,
C.
, and
Forman
,
J.
,
2010
, “
Kinematics of the Thorax Under Dynamic Belt Loading Conditions
,”
Int. J. Crashworthiness
, 15(2), pp.
175
190
.10.1080/13588260903094426
33.
Shaw
,
G.
,
Lessley
,
D.
,
Ash
,
J.
,
Crandall
,
J.
, and
Parent
,
D.
,
2013
, “
Response Comparison for the Hybrid III, THOR Mod Kit With SD-3 Shoulder, and PMHS in a Simulated Frontal Crash
,” 23rd International Technical Conference on the Enhanced Safety of Vehicles (
ESV
),
Seoul, Korea
, May 27–30, Paper No. 13–0130.https://www-esv.nhtsa.dot.gov/Proceedings/23/files/23ESV-000130.PDF
34.
Salzar
,
R. S.
,
Lau
,
S. H.
,
Lessley
,
D. J.
,
Sochor
,
M. R.
,
Shaw
,
C. G.
,
Kent
,
R. W.
, and
Crandall
,
J. R.
,
2013
, “
Thoracic Response to Shoulder Belt Loading: Comparison of Tabletop and Frontal Sled Tests With PMHS
,”
Traffic Inj. Prev.
,
14
(
2
), pp.
159
167
.10.1080/15389588.2012.692223
35.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,” 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (
ESV
),
Stuttgart, Germany
, June 15–18, Paper No. 09–0407.https://www-esv.nhtsa.dot.gov/Proceedings/21/09-0407.pdf
36.
Thunert
,
C.
,
2012
, “
CORA Release 3.6 User's Manual
,”
GNS mbH
,
Braunschweig, Germany
.
37.
Zeng
,
W.
,
Caudillo
,
A.
,
Mukherjee
,
S.
,
Lee
,
S.-H.
, and
Panzer
,
M. B.
,
2021
, “
Development and Multi-Level Validation of a Computational Model to Predict Traumatic Aortic Injury
,”
Comput. Biol. Med.
,
136
, p.
104700
.10.1016/j.compbiomed.2021.104700
38.
Miller
,
L. E.
,
Urban
,
J. E.
, and
Stitzel
,
J. D.
,
2017
, “
Validation Performance Comparison for Finite Element Models of the Human Brain
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
12
), pp.
1273
1288
.10.1080/10255842.2017.1340462
39.
Kato
,
D.
,
Nakahira
,
Y.
,
Atsumi
,
N.
, and
Iwamoto
,
M.
,
2018
, “
Development of Human-Body Model THUMS Version 6 Containing Muscle Controllers and Application to Injury Analysis in Frontal Collision After Brake Deceleration
,” International Research Council on the Biomechanics of Impact (
IRCOBI
),
Athens, Greece
, Sept. 12–14, pp.
207
223
.http://www.ircobi.org/wordpress/downloads/irc18/pdffiles/32.pdf
40.
Albert
,
D. L.
,
Beeman
,
S. M.
, and
Kemper
,
A. R.
,
2018
, “
Occupant Kinematics of the Hybrid III, THOR-M, and Postmortem Human Surrogates Under Various Restraint Conditions in Full-Scale Frontal Sled Tests
,”
Traffic Inj. Prev.
,
19
(
Suppl. 1
), pp.
S50
S58
.10.1080/15389588.2017.1405390
41.
Horsch
,
J.
,
Melvin
,
J.
,
Viano
,
D.
, and
Mertz
,
H.
,
1991
, “
Thoracic Injury Assessment of Belt Restraint Systems Based on Hybrid III Chest Compression
,”
SAE
Technical Paper No. 912895. 10.4271/912895
42.
Kent
,
R.
,
Lessley
,
D.
,
Shaw
,
G.
, and
Crandall
,
J.
,
2003
, “
The Utility of Hybrid III and THOR Chest Deflection for Discriminating Between Standard and Force-Limiting Belt Systems
,”
Stapp Car Crash J.
,
47
, pp.
267
297
.10.4271/2003-22-0013
43.
Shaw
,
G.
,
Crandall
,
J.
, and
Butcher
,
J.
,
2000
, “
Biofidelity Evaluation of the THOR Advanced Frontal Crash Test Dummy
,” International Research Council on the Biomechanics of Impact (
IRCOBI
),
Montpellier, France
, Sept. 20–22, pp.
11
29
. https://www.researchgate.net/publication/261682875_Biofidelity_Evaluation_of_the_THOR_Advanced_Frontal_Crash_Test_Dummy
44.
Forman
,
J.
,
Lessley
,
D.
,
Shaw
,
C. G.
,
Evans
,
J.
,
Kent
,
R.
,
Rouhana
,
S. W.
, and
Prasad
,
P.
,
2006
, “
Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low Speed, Frontal Crashes
,”
Stapp Car Crash J.
,
50
, pp.
191
215
.10.4271/2006-22-0009
45.
Vezin
,
P.
,
Bruyere-Garnier
,
K.
,
Bermond
,
F.
, and
Verriest
,
J. P.
,
2002
, “
Comparison of Hybrid III, Thor-Alpha and PMHS Response in Frontal Sled Tests
,”
Stapp Car Crash J.
,
46
, pp.
1
26
.10.4271/2002-22-0001
46.
Newby
,
N.
,
Somers
,
J. T.
,
Caldwell
,
E. E.
,
Perry
,
C.
,
Littell
,
J.
, and
Gernhardt
,
M.
,
2013
, “
Assessing Biofidelity of the Test Device for Human Occupant Restraint (THOR) Against Historic Human Volunteer Data
,”
Stapp Car Crash J.
,
57
, pp.
469
505
.10.4271/2013-22-0018
47.
Zeng
,
W.
,
Mukherjee
,
S.
,
Caudillo
,
A.
,
Forman
,
J.
, and
Panzer
,
M. B.
,
2021
, “
Evaluation and Validation of Thorax Model Responses: A Hierarchical Approach to Achieve High Biofidelity for Thoracic Musculoskeletal System
,”
Front. Bioeng. Biotechnol.
,
9
, p.
712656
.10.3389/fbioe.2021.712656
48.
National Highway Traffic Safety Administration (NHTSA),
2005
, “
THOR Certification Manual, Revision 2005.2
,”
U.S. Department of Transportation
,
Washington, DC
,
Report No. GESAC-05-04.
49.
Nusholtz
,
G. S.
,
Aoun
,
Z.
,
Di Domenico
,
L.
,
Hsu
,
T.
,
Gracián
,
M. A.
, and
Prado
,
J. A.
,
2013
, “
Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs
,”
SAE
Paper No. 2013-01-1249.10.4271/2013-01-1249
You do not currently have access to this content.