Abstract

Within the aortic valve (AV) leaflet exists a population of interstitial cells (AVICs) that maintain the constituent tissues by extracellular matrix (ECM) secretion, degradation, and remodeling. AVICs can transition from a quiescent, fibroblast-like phenotype to an activated, myofibroblast phenotype in response to growth or disease. AVIC dysfunction has been implicated in AV disease processes, yet our understanding of AVIC function remains quite limited. A major characteristic of the AVIC phenotype is its contractile state, driven by contractile forces generated by the underlying stress fibers (SF). However, direct assessment of the AVIC SF contractile state and structure within physiologically mimicking three-dimensional environments remains technically challenging, as the size of single SFs are below the resolution of light microscopy. Therefore, in the present study, we developed a three-dimensional (3D) computational approach of AVICs embedded in 3D hydrogels to estimate their SF local orientations and contractile forces. One challenge with this approach is that AVICs will remodel the hydrogel, so that the gel moduli will vary spatially. We thus utilized our previous approach (Khang et al. 2023, “Estimation of Aortic Valve Interstitial Cell-Induced 3D Remodeling of Poly (Ethylene Glycol) Hydrogel Environments Using an Inverse Finite Element Approach,” Acta Biomater., 160, pp. 123–133) to define local hydrogel mechanical properties. The AVIC SF model incorporated known cytosol and nucleus mechanical behaviors, with the cell membrane assumed to be perfectly bonded to the surrounding hydrogel. The AVIC SFs were first modeled as locally unidirectional hyperelastic fibers with a contractile force component. An adjoint-based inverse modeling approach was developed to estimate local SF orientation and contractile force. Substantial heterogeneity in SF force and orientations were observed, with the greatest levels of SF alignment and contractile forces occurring in AVIC protrusions. The addition of a dispersed SF orientation to the modeling approach did not substantially alter these findings. To the best of our knowledge, we report the first fully 3D computational contractile cell models which can predict locally varying stress fiber orientation and contractile force levels.

References

1.
Taylor
,
P. M.
,
Batten
,
P.
,
Brand
,
N. J.
,
Thomas
,
P. S.
, and
Yacoub
,
M. H.
,
2003
, “
The Cardiac Valve Interstitial Cell
,”
Int. J. Biochem. Cell Biol.
,
35
(
2
), pp.
113
118
.10.1016/S1357-2725(02)00100-0
2.
Rutkovskiy
,
A.
,
Malashicheva
,
A.
,
Sullivan
,
G.
,
Bogdanova
,
M.
,
Kostareva
,
A.
,
Stensløkken
,
K.-O.
,
Fiane
,
A.
, and
Vaage
,
J.
,
2017
, “
Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification
,”
J. Am. Heart Assoc.
,
6
(
9
), p.
e006339
.10.1161/JAHA.117.006339
3.
Hinton
,
R. B.
, Jr
,
Lincoln
,
J.
,
Deutsch
,
G. H.
,
Osinska
,
H.
,
Manning
,
P. B.
,
Benson
,
D. W.
, and
Yutzey
,
K. E.
,
2006
, “
Extracellular Matrix Remodeling and Organization in Developing and Diseased Aortic Valves
,”
Circ. Res.
,
98
(
11
), pp.
1431
1438
.10.1161/01.RES.0000224114.65109.4e
4.
Liu
,
A. C.
,
Joag
,
V. R.
, and
Gotlieb
,
A. I.
,
2007
, “
The Emerging Role of Valve Interstitial Cell Phenotypes in Regulating Heart Valve Pathobiology
,”
Am. J. Pathol.
,
171
(
5
), pp.
1407
1418
.10.2353/ajpath.2007.070251
5.
Rabkin-Aikawa
,
E.
,
Farber
,
M.
,
Aikawa
,
M.
, and
Schoen
,
F. J.
,
2004
, “
Dynamic and ReVersible Changes of Interstitial Cell Phenotype During Remodeling of Cardiac Valves
,”
J. Heart Valve Dis.
,
13
(
5
), pp.
841
847
.https://pubmed.ncbi.nlm.nih.gov/15473488/
6.
Walker
,
G. A.
,
Masters
,
K. S.
,
Shah
,
D. N.
,
Anseth
,
K. S.
, and
Leinwand
,
L. A.
,
2004
, “
Valvular Myofibroblast Activation by Transforming Growth Factor
,”
Circulation Res.
,
95
(
3
), pp.
253
260
.10.1161/01.RES.0000136520.07995.aa
7.
Khang
,
A.
,
Nguyen
,
Q.
,
Feng
,
X.
,
Howsmon
,
D. P.
, and
Sacks
,
M. S.
,
2023
, “
ThreeDimensional Analysis of Hydrogel-Imbedded Aortic Valve Interstitial Cell Shape and Its ReLation to Contractile Behavior
,”
Acta Biomater.
,
163
, pp.
194
209
.10.1016/j.actbio.2022.01.039
8.
Tandon
,
I.
,
Razavi
,
A.
,
Ravishankar
,
P.
,
Walker
,
A.
,
Sturdivant
,
N. M.
,
Lam
,
N. T.
,
Wolchok
,
J. C.
, and
Balachandran
,
K.
,
2016
, “
Valve Interstitial Cell Shape Modulates Cell Contractility Independent of Cell Phenotype
,”
J. Biomech.
,
49
(
14
), pp.
3289
3297
.10.1016/j.jbiomech.2016.08.013
9.
Lam
,
N. T.
,
Muldoon
,
T. J.
,
Quinn
,
K. P.
,
Rajaram
,
N.
, and
Balachandran
,
K.
,
2016
, “
Valve inTerstitial Cell Contractile Strength and Metabolic State Are Dependent on Its Shape
,”
Integr. Biol.
,
8
(
10
), pp.
1079
1089
.10.1039/C6IB00120C
10.
Towler
,
D. A.
,
2013
, “
Molecular and Cellular Aspects of Calcific Aortic Valve Disease
,”
Circ. Res.
,
113
(
2
), pp.
198
208
.10.1161/CIRCRESAHA.113.300155
11.
Rajamannan
,
N. M.
,
Evans
,
F. J.
,
Aikawa
,
E.
,
Grande-Allen
,
K. J.
,
Demer
,
L. L.
,
Heistad
,
D. D.
,
Simmons
,
C. A.
, et al.,
2011
, “
Calcific Aortic Valve Disease: Not Simply a Degenerative Process: A Review and Agenda for Research From the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive Summary: Calcific Aortic Valve Disease-2011 Update
,”
Circulation
,
124
(
16
), pp.
1783
1791
.10.1161/CIRCULATIONAHA.110.006767
12.
Mordi
,
I.
, and
Tzemos
,
N.
,
2012
, “
Bicuspid Aortic Valve Disease: A Comprehensive Review
,”
Cardiol. Res. Pract.
,
2012
, pp.
1
7
.10.1155/2012/196037
13.
Aggarwal
,
A.
,
Ferrari
,
G.
,
Joyce
,
E.
,
Daniels
,
M. J.
,
Sainger
,
R.
,
Gorman
,
J. H.
, 3rd
,
Gorman
,
R.
, and
Sacks
,
M. S.
,
2014
, “
Architectural Trends in the Human Normal and Bicuspid Aortic Valve Leaflet and Its Relevance to Valve Disease
,”
Ann. Biomed. Eng.
,
42
(
5
), pp.
986
998
.10.1007/s10439-014-0973-0
14.
Schroer
,
A. K.
, and
Merryman
,
W. D.
,
2015
, “
Mechanobiology of Myofibroblast Adhesion in Fibrotic Cardiac Disease
,”
J. Cell Sci.
,
128
(
10
), pp.
1865
1875
.10.1242/jcs.162891
15.
Ali
,
M. S.
,
Deb
,
N.
,
Wang
,
X.
,
Rahman
,
M.
,
Christopher
,
G. F.
, and
Lacerda
,
C. M.
,
2018
, “
Correlation Between Valvular Interstitial Cell Morphology and Phenotypes: A Novel Way to Detect Activation
,”
Tissue Cell
,
54
, pp.
38
46
.10.1016/j.tice.2018.07.004
16.
Liu
,
A. C.
, and
Gotlieb
,
A. I.
,
2007
, “
Characterization of Cell Motilityin Single Heart Valve Interstitial Cells In Vitro
,”
Histol. Histopathol.
,
22
(
8
), pp.
873
882
.10.14670/HH-22.873
17.
Khang
,
A.
,
Buchanan
,
R. M.
,
Ayoub
,
S.
,
Rego
,
B. V.
,
Lee
,
C.-H.
,
Ferrari
,
G.
,
Anseth
,
K. S.
, and
Sacks
,
M. S.
,
2018
, “
Mechanobiology of the Heart Valve Interstitial Cell: Simulation, Experiment, and Discovery
,”
Mechanobiology in Health and Disease
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
249
283
.10.1016/B978-0-12-812952-4.00008-8
18.
Khang
,
A.
,
Howsmon
,
D. P.
,
Lejeune
,
E.
, and
Sacks
,
M. S.
,
2019
, “
Multi-Scale Modeling of the Heart Valve Interstitial Cell
,”
Multi-Scale Extracellular Matrix Mechanics and Mechanobiology
,
Springer International Publishing
, New York, pp.
21
53
.https://sites.bu.edu/lejeunelab/files/2019/09/Multiscale_modeling_of_the_heart_valve_interstitial_cell.pdf
19.
Merryman
,
W. D.
,
Huang
,
H. Y. S.
,
Schoen
,
F. J.
, and
Sacks
,
M. S.
,
2006
, “
The Effects of Cellular Contraction on Aortic Valve Leaflet Flexural Stiffness
,”
J. Biomech.
,
39
(
1
), pp.
88
96
.10.1016/j.jbiomech.2004.11.008
20.
Kershaw
,
J. D.
,
Misfeld
,
M.
,
Sievers
,
H. H.
,
Yacoub
,
M. H.
, and
Chester
,
A. H.
,
2004
, “
Specific Regional and Directional Contractile Responses of Aortic Cusp Tissue
,”
J. Heart Valve Dis.
,
13
(
5
), pp.
798
803
.https://pubmed.ncbi.nlm.nih.gov/15473483/
21.
Ayoub
,
S.
,
Howsmon
,
D. P.
,
Lee
,
C.-H.
, and
Sacks
,
M. S.
,
2021
, “
On the Role of Predicted In Vivo Mitral Valve Interstitial Cell Deformation on Its Biosynthetic Behavior
,”
Biomech. Model. Mechanobiol.
,
20
(
1
), pp.
135
144
.10.1007/s10237-020-01373-w
22.
Ayoub
,
S.
,
Tsai
,
K. C.
,
Khalighi
,
A. H.
, and
Sacks
,
M. S.
,
2018
, “
The Three-Dimensional MicroenviRonment of the Mitral Valve: Insights Into the Effects of Physiological Loads
,”
Cell. Mol. Bioeng.
,
11
(
4
), pp.
291
306
.10.1007/s12195-018-0529-8
23.
Khang
,
A.
,
Rodriguez
,
A. G.
,
Schroeder
,
M. E.
,
Sansom
,
J.
,
Lejeune
,
E.
,
Anseth
,
K. S.
, and
Sacks
,
M. S.
,
2019
, “
Quantifying Heart Valve Interstitial Cell Contractile State Using Highly Tunable Poly(Ethylene Glycol) Hydrogels
,”
Acta Biomater.
,
96
, pp.
354
367
.10.1016/j.actbio.2019.07.010
24.
Khang
,
A.
,
Lejeune
,
E.
,
Abbaspour
,
A.
,
Howsmon
,
D. P.
, and
Sacks
,
M. S.
,
2021
, “
On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
094503
.10.1115/1.4050915
25.
Benton
,
J. A.
,
Fairbanks
,
B. D.
, and
Anseth
,
K. S.
,
2009
, “
Characterization of Valvular InterStitial Cell Function in Three Dimensional Matrix Metalloproteinase Degradable PEG HydroGels
,”
Biomaterials
,
30
(
34
), pp.
6593
6603
.10.1016/j.biomaterials.2009.08.031
26.
Mabry
,
K. M.
,
Lawrence
,
R. L.
, and
Anseth
,
K. S.
,
2015
, “
Dynamic Stiffening of Poly(Ethylene Glycol)-Based Hydrogels to Direct Valvular Interstitial Cell Phenotype in a Three-Dimensional Environment
,”
Biomaterials
,
49
, pp.
47
56
.10.1016/j.biomaterials.2015.01.047
27.
Mabry
,
K. M.
,
Schroeder
,
M. E.
,
Payne
,
S. Z.
, and
Anseth
,
K. S.
,
2016
, “
Three-Dimensional High-Throughput Cell Encapsulation Platform to Study Changes in Cell-Matrix Interactions
,”
ACS Appl. Mater. Interfaces
,
8
(
34
), pp.
21914
21922
.10.1021/acsami.5b11359
28.
Mabry
,
K. M.
,
Payne
,
S. Z.
, and
Anseth
,
K. S.
,
2016
, “
Microarray Analyses to Quantify AdvanTages of 2D and 3D Hydrogel Culture Systems in Maintaining the Native Valvular Interstitial Cell Phenotype
,”
Biomaterials
,
74
, pp.
31
41
.10.1016/j.biomaterials.2015.09.035
29.
Caliari
,
S. R.
, and
Burdick
,
J. A.
,
2016
, “
A Practical Guide to Hydrogels for Cell Culture
,”
Nat. Methods
,
13
(
5
), pp.
405
414
.10.1038/nmeth.3839
30.
Legant
,
W. R.
,
Miller
,
J. S.
,
Blakely
,
B. L.
,
Cohen
,
D. M.
,
Genin
,
G. M.
, and
Chen
,
C. S.
,
2010
, “
Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices
,”
Nat. Methods
,
7
(
12
), pp.
969
971
.10.1038/nmeth.1531
31.
Steinwachs
,
J.
,
Metzner
,
C.
,
Skodzek
,
K.
,
Lang
,
N.
,
Thievessen
,
I.
,
Mark
,
C.
,
Mü Nster
,
S.
,
Aifantis
,
K. E.
, and
Fabry
,
B.
,
2016
, “
Three-Dimensional Force Microscopy of Cells in BiopolyMer Networks
,”
Nat. Methods
,
13
(
2
), pp.
171
176
.10.1038/nmeth.3685
32.
Koch
,
T. M.
,
Mü Nster
,
S.
,
Bonakdar
,
N.
,
Butler
,
J. P.
, and
Fabry
,
B.
,
2012
, “
3d Traction Forces in Cancer Cell Invasion
,”
PloS one
,
7
(
3
), p.
e33476
.10.1371/journal.pone.0033476
33.
Song
,
D.
,
Seidl
,
D. T.
, and
Oberai
,
A. A.
,
2020
, “
Three-Dimensional Traction Microscopy Accounting for Cell-Induced Matrix Degradation
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112935
.10.1016/j.cma.2020.112935
34.
Dong
,
L.
, and
Oberai
,
A. A.
,
2017
, “
Recovery of Cellular Traction in Three-Dimensional NonLinear Hyperelastic Matrices
,”
Comput. Methods Appl. Mech. Eng.
,
314
, pp.
296
313
.10.1016/j.cma.2016.05.020
35.
Lejeune
,
E.
,
Khang
,
A.
,
Sansom
,
J.
, and
Sacks
,
M. S.
,
2020
, “
FM-Track: A Fiducial Marker Tracking Software for Studying Cell Mechanics in a Three-Dimensional Environment
,”
SoftwareX
,
11
, p.
100417
.10.1016/j.softx.2020.100417
36.
Toyjanova
,
J.
,
Bar-Kochba
,
E.
,
López-Fagundo
,
C.
,
Reichner
,
J.
,
Hoffman-Kim
,
D.
, and
Franck
,
C.
,
2014
, “
High Resolution, Large Deformation 3d Traction Force Microscopy
,”
PLoS ONE
,
9
(
4
), p.
e90976
.10.1371/journal.pone.0090976
37.
Barrasa-Fano
,
J.
,
Shapeti
,
A.
,
Jorge-Peñas
,
Á.
,
Barzegari
,
M.
,
Sanz-Herrera
,
J. A.
, and
Van Oosterwyck
,
H.
,
2021
, “
TFMLAB: A MATLAB Toolbox for 4d Traction Force Microscopy
,”
SoftwareX
,
15
, p.
100723
.10.1016/j.softx.2021.100723
38.
Barrasa-Fano
,
J.
,
Shapeti
,
A.
,
de Jong
,
J.
,
Ranga
,
A.
,
Sanz-Herrera
,
J.
, and
Oosterwyck
,
H. V.
,
2021
, “
Advanced in Silico Validation Framework for Three-Dimensional Traction Force miCroscopy and Application to an In Vitro Model of Sprouting Angiogenesis
,”
Acta Biomater.
,
126
, pp.
326
338
.10.1016/j.actbio.2021.03.014
39.
Khang
,
A.
,
Steinman
,
J.
,
Tuscher
,
R.
,
Feng
,
X.
, and
Sacks
,
M. S.
,
2023
, “
Estimation of Aortic Valve Interstitial Cell-Induced 3D Remodeling of Poly(Ethylene Glycol) Hydrogel Environments Using an Inverse Finite Element Approach
,”
Acta Biomater.
,
160
, pp.
123
133
.10.1016/j.actbio.2023.01.043
40.
Sakamoto
,
Y.
,
Buchanan
,
R. M.
, and
Sacks
,
M. S.
,
2016
, “
On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
244
258
.10.1016/j.jmbbm.2015.09.027
41.
Sakamoto
,
Y.
,
Buchanan
,
R. M.
,
Sanchez-Adams
,
J.
,
Guilak
,
F.
, and
Sacks
,
M. S.
,
2017
, “
On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach
,”
ASME J. Biomech. Eng.
,
139
(
2
), p.
021007
.10.1115/1.4035557
42.
Thoumine
,
O.
,
Cardoso
,
O.
, and
Meister
,
J.-J.
,
1999
, “
Changes in the Mechanical Properties of Fibroblasts During Spreading: A Micromanipulation Study
,”
Eur. Biophys. J.
,
28
(
3
), pp.
222
234
.10.1007/s002490050203
43.
Ronan
,
W.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
McGarry
,
J. P.
,
2012
, “
Numerical Investigation of the Active Role of the Actin Cytoskeleton in the Compression Resistance of Cells
,”
J. Mech, Behav. Biomed. Mater.
,
14
, pp.
143
157
.10.1016/j.jmbbm.2012.05.016
44.
Johnson
,
C.
,
Hanson
,
M.
, and
Helgeson
,
S.
,
1987
, “
Porcine Cardiac Valvular SubenDothelial Cells in Culture: Cell Isolation and Growth Characteristics
,”
J. Mol. Cell. Cardiol.
,
19
(
12
), pp.
1185
1193
.10.1016/S0022-2828(87)80529-1
45.
Fairbanks
,
B. D.
,
Schwartz
,
M. P.
,
Halevi
,
A. E.
,
Nuttelman
,
C. R.
,
Bowman
,
C. N.
, and
Anseth
,
K. S.
,
2009
, “
A Versatile Synthetic Extracellular Matrix Mimic Via Thiol-Norbornene Photopolymerization
,”
Adv. Mater.
,
21
(
48
), pp.
5005
5010
.10.1002/adma.200901808
46.
Qiu
,
G.
, and
Pence
,
T.
,
1997
, “
Remarks on the Behavior of Simple Directionally Reinforced Incompressible Nonlinearly Elastic Solids
,”
J. Elasticity
,
49
(
1
), pp.
1
30
.10.1023/A:1007410321319
47.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2016
, “
On the Accuracy and Fitting of Transversely Isotropic Material Models
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
554
566
.10.1016/j.jmbbm.2016.04.024
48.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-in Preand Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
49.
Mitusch
,
S.
,
Funke
,
S.
, and
Dokken
,
J.
,
2019
, “
Dolfin-Adjoint 2018.1: Automated Adjoints for FEniCS and Firedrake
,”
J. Open Source Software
,
4
(
38
), p.
1292
.10.21105/joss.01292
50.
Hansen
,
P. C.
,
1992
, “
Analysis of Discrete ill-posed Problems by Means of the l-Curve
,”
SIAM Rev.
,
34
(
4
), pp.
561
580
.10.1137/1034115
51.
Grazi
,
E.
,
1997
, “
What is the Diameter of the Actin Filament?
,”
FEBS Lett.
,
405
(
3
), pp.
249
252
.10.1016/S0014-5793(97)00214-7
52.
Lauffenburger
,
D. A.
, and
Horwitz
,
A. F.
,
1996
, “
Cell Migration: A Physically Integrated Molecular Process
,”
Cell
,
84
(
3
), pp.
359
369
.10.1016/S0092-8674(00)81280-5
53.
Feld
,
L.
,
Kellerman
,
L.
,
Mukherjee
,
A.
,
Livne
,
A.
,
Bouchbinder
,
E.
, and
Wolfenson
,
H.
,
2020
, “
Cellular Contractile Forces Are Nonmechanosensitive
,”
Sci. Adv.
,
6
(
17
), p.
eaaz6997
.10.1126/sciadv.aaz6997
54.
Tuscher
,
R.
,
Khang
,
A.
,
West
,
T. M.
,
Camillo
,
C.
,
Ferrari
,
G.
, and
Sacks
,
M. S.
,
2023
, “
Functional Differences in Human Aortic Valve Interstitial Cells From Patients With Varying Calcific Aortic Valve Disease
,”
Front. Physiol.
,
14
, p.
1168691
.10.3389/fphys.2023.1168691
55.
Howsmon
,
D. P.
, and
Sacks
,
M. S.
,
2021
, “
On Valve Interstitial Cell Signaling: The Link Between Multiscale Mechanics and Mechanobiology
,”
Cardiovasc. Eng. Technol.
,
12
(
1
), pp.
15
27
.10.1007/s13239-020-00509-4
You do not currently have access to this content.