Abstract

Finite element (FE) modeling has been used as a research tool for investigating underlying ligaments biomechanics and orthopedic applications. However, FE models of the ligament in the foot have been developed with various configurations, mainly due to their complex three-dimensional geometry, material properties, and boundary conditions. Therefore, the purpose of this review was to summarize the current state of finite element modeling approaches that have been used in the field of ligament biomechanics, to discuss their applicability to foot ligament modeling in a practical setting, and also to acknowledge current limitations and challenges. A comprehensive literature search was performed. Each article was analyzed in terms of the methods used for: (a) ligament geometry, (b) material property, (c) boundary and loading condition related to its application, and (d) model verification and validation. Of the reviewed studies, 79.8% of the studies used simplified representations of ligament geometry, the nonlinear mechanical behavior of ligaments was taken into account in only 19.2% of the studies, 33.6% of included studies did not include any kind of validation of the FE model. Further refinement in the functional modeling of ligaments, the microstructure level characteristics, nonlinearity, and time-dependent response, may be warranted to ensure the predictive ability of the models.

References

1.
Gu
,
Y. D.
,
Rong
,
M.
,
Li
,
Z. Y.
,
Lake
,
M. J.
, and
Ruan
,
G. Q.
,
2012
, “
Finite Element Analysis of Deep Transverse Metatarsal Ligaments Mechanical Response During Landing
,”
Adv. Manuf. Technol.
,
472–475
(
Pts 1-4
), pp.
2558
2561
.10.4028/www.scientific.net/AMR.472-475.2558
2.
Forestiero
,
A.
,
Carniel
,
E. L.
,
Fontanella
,
C. G.
, and
Natali
,
A. N.
,
2017
, “
Numerical Model for Healthy and Injured Ankle Ligaments
,”
Aust. Phys. Eng. Sci. Med.
,
40
(
2
), pp.
289
295
.10.1007/s13246-017-0533-7
3.
Kitaoka
,
H. B.
,
Ahn
,
T. K.
,
Luo
,
Z. P.
, and
An
,
K. N.
,
1997
, “
Stability of the Arch of the Foot
,”
Foot Ankle Int.
,
18
(
10
), pp.
644
648
.10.1177/107110079701801008
4.
Huiskes
,
R.
, and
Chao
,
E. Y.
,
1983
, “
A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade
,”
J. Biomech.
,
16
(
6
), pp.
385
409
.10.1016/0021-9290(83)90072-6
5.
Solan
,
M. C.
,
Moorman
,
C. T.
, 3rd
,
Miyamoto
,
R. G.
,
Jasper
,
L. E.
, and
Belkoff
,
S. M.
,
2001
, “
Ligamentous Restraints of the Second Tarsometatarsal Joint: A Biomechanical Evaluation
,”
Foot Ankle Int.
,
22
(
8
), pp.
637
641
.10.1177/107110070102200804
6.
Wirth
,
S. H.
,
Viehofer
,
A. F.
,
Singh
,
S.
,
Zimmermann
,
S. M.
,
Gotschi
,
T.
,
Rigling
,
D.
, and
Jud
,
L.
,
2019
, “
Anterior Talofibular Ligament Lesion is Associated With Increased Flat Foot Deformity but Does Not Affect Correction by Lateral Calcaneal Lengthening
,”
BMC Musculoskelet. Disord.
,
20
(
1
), p.
496
.10.1186/s12891-019-2827-2
7.
Forman
,
J. L.
,
Kent
,
R. W.
,
Mroz
,
K.
,
Pipkorn
,
B.
,
Bostrom
,
O.
, and
Segui-Gomez
,
M.
,
2012
, “
Predicting Rib Fracture Risk With Whole-Body Finite Element Models: Development and Preliminary Evaluation of a Probabilistic Analytical Framework
,”
Ann. Adv. Automot. Med.
,
56
, pp.
109
124
.www.ncbi.nlm.nih.gov/pmc/articles/PMC3503420/
8.
Untaroiu
,
C. D.
,
Yue
,
N.
, and
Shin
,
J.
,
2013
, “
A Finite Element Model of the Lower Limb for Simulating Automotive Impacts
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
513
526
.10.1007/s10439-012-0687-0
9.
Klekiel
,
T.
, and
Będziński
,
R.
,
2015
, “
Finite Element Analysis of Large Deformation of Articular Cartilage in Upper Ankle Joint of Occupant in Military Vehicles During Explosion
,”
Arch. Metall. Mater.
,
60
(
3
), pp.
2115
2121
.10.1515/amm-2015-0356
10.
Niu
,
W.
,
Tang
,
T.
,
Zhang
,
M.
,
Jiang
,
C.
, and
Fan
,
Y.
,
2014
, “
An In Vitro and Finite Element Study of Load Redistribution in the Midfoot
,”
Sci. China Life Sci.
,
57
(
12
), pp.
1191
1196
.10.1007/s11427-014-4731-1
11.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
12.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.10.1114/1.1484219
13.
Giddings
,
V. L.
,
Beaupre
,
G. S.
,
Whalen
,
R. T.
, and
Carter
,
D. R.
,
2000
, “
Calcaneal Loading During Walking and Running
,”
Med. Sci. Sports Exerc.
,
32
(
3
), pp.
627
634
.10.1097/00005768-200003000-00012
14.
Hopkins
,
A. R.
,
Hansen
,
U. N.
, and
Amis
,
A. A.
,
2005
, “
Finite Element Models of Total Shoulder Replacement: Application of Boundary Conditions
,”
Comput, Methods Biomech. Biomed. Eng.
,
8
(
1
), pp.
39
44
.10.1080/10255840500075205
15.
Kang
,
K. T.
,
Koh
,
Y. G.
,
Son
,
J.
,
Kim
,
S. J.
,
Choi
,
S.
,
Jung
,
M.
, and
Kim
,
S. H.
,
2017
, “
Finite Element Analysis of the Biomechanical Effects of 3 Posterolateral Corner Reconstruction Techniques for the Knee Joint
,”
Arthroscopy
,
33
(
8
), pp.
1537
1550
.10.1016/j.arthro.2017.02.011
16.
Woo
,
S. L.
,
Debski
,
R. E.
,
Withrow
,
J. D.
, and
Janaushek
,
M. A.
,
1999
, “
Biomechanics of Knee Ligaments
,”
Am. J. Sports Med.
,
27
(
4
), pp.
533
543
.10.1177/03635465990270042301
17.
Nie
,
B.
,
Panzer
,
M. B.
,
Mane
,
A.
,
Mait
,
A. R.
,
Donlon
,
J. P.
,
Forman
,
J. L.
, and
Kent
,
R. W.
,
2017
, “
Determination of the in Situ Mechanical Behavior of Ankle Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
502
512
.10.1016/j.jmbbm.2016.09.010
18.
Kura
,
H.
,
Luo
,
Z. P.
,
Kitaoka
,
H. B.
,
Smutz
,
W. P.
, and
An
,
K. N.
,
2001
, “
Mechanical Behavior of the Lisfranc and Dorsal Cuneometatarsal Ligaments: In Vitro Biomechanical Study
,”
J Orthop. Trauma
,
15
(
2
), pp.
107
110
.10.1097/00005131-200102000-00006
19.
Wei
,
F.
,
Hunley
,
S. C.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2011
, “
Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury Due to External Rotation
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
756
765
.10.1007/s10439-010-0234-9
20.
Cifuentes-De la Portilla
,
C.
,
Pasapula
,
C.
,
Larrainzar-Garijo
,
R.
, and
Bayod
,
J.
,
2020
, “
Finite Element Analysis of Secondary Effect of Midfoot Fusions on the Spring Ligament in the Management of Adult Acquired Flatfoot
,”
Clin. Biomech. (Bristol, Avon)
,
76
, p.
105018
.10.1016/j.clinbiomech.2020.105018
21.
Cenatiempo
,
M.
,
Buzzi
,
R.
,
Bianco
,
S.
,
Iapalucci
,
G.
, and
Campanacci
,
D. A.
,
2019
, “
Tarsometatarsal Joint Complex Injuries: A Study of Injury Pattern in Complete Homolateral Lesions
,”
Injury
,
50
(
Suppl 2
), pp.
S8
S11
.10.1016/j.injury.2019.01.038
22.
Nie
,
B.
,
Panzer
,
M. B.
,
Mane
,
A.
,
Mait
,
A. R.
,
Donlon
,
J. P.
,
Forman
,
J. L.
, and
Kent
,
R. W.
,
2016
, “
A Framework for Parametric Modeling of Ankle Ligaments to Determine the in Situ Response Under Gross Foot Motion
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
12
), pp.
1254
1265
.10.1080/10255842.2015.1125474
23.
Scarton
,
A.
,
Guiotto
,
A.
,
Malaquias
,
T.
,
Spolaor
,
F.
,
Sinigaglia
,
G.
,
Cobelli
,
C.
,
Jonkers
,
I.
, and
Sawacha
,
Z.
,
2018
, “
A Methodological Framework for Detecting Ulcers' Risk in Diabetic Foot Subjects by Combining Gait Analysis, a New Musculoskeletal Foot Model and a Foot Finite Element Model
,”
Gait Posture
,
60
, pp.
279
285
.10.1016/j.gaitpost.2017.08.036
24.
Cheung
,
J. T.
,
Zhang
,
M.
, and
An
,
K. N.
,
2004
, “
Effects of Plantar Fascia Stiffness on the Biomechanical Responses of the Ankle-Foot Complex
,”
Clin. Biomech. (Bristol, Avon)
,
19
(
8
), pp.
839
846
.10.1016/j.clinbiomech.2004.06.002
25.
Smolen
,
C.
, and
Quenneville
,
C. E.
,
2017
, “
A Finite Element Model of the Foot/Ankle to Evaluate Injury Risk in Various Postures
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1993
2008
.10.1007/s10439-017-1844-2
26.
Alonso-Rasgado
,
T.
,
Jimenez-Cruz
,
D.
, and
Karski
,
M.
,
2017
, “
3-D Computer Modelling of Malunited Posterior Malleolar Fractures: Effect of Fragment Size and Offset on Ankle Stability, Contact Pressure and Pattern
,”
J. Foot Ankle Res.
,
10
(
1
), p.
13
.10.1186/s13047-017-0194-5
27.
Chen
,
C.
,
Cheng
,
Y. Z.
,
Cheng
,
H.
,
Wen
,
J. M.
,
Zhao
,
J. Y.
,
Hou
,
W. Y.
,
Zhu
,
J. F.
, and
Qiu
,
P.
,
2017
, “
Finite Element Analysis of the Stress Concentration in Pronation-Abduction Ankle Joint Injuries
,”
Int. J. Clin. Exp. Med.
,
10
(
1
), pp.
276
284
.www.researchgate.net/publication/320699279_Finite_element_analysis_of_the_stress_concentration_in_pronationabduction_ankle_joint_injuries
28.
Chen
,
W. M.
,
Lee
,
S. J.
, and
Lee
,
P. V. S.
,
2015
, “
Plantar Pressure Relief Under the Metatarsal Heads: Therapeutic Insole Design Using Three-Dimensional Finite Element Model of the Foot
,”
J. Biomech.
,
48
(
4
), pp.
659
665
.10.1016/j.jbiomech.2014.12.043
29.
Chen
,
W. M.
,
Lee
,
T.
,
Lee
,
P. V.
,
Lee
,
J. W.
, and
Lee
,
S. J.
,
2010
, “
Effects of Internal Stress Concentrations in Plantar Soft-Tissue–A Preliminary Three-Dimensional Finite Element Analysis
,”
Med. Eng. Phys.
,
32
(
4
), pp.
324
331
.10.1016/j.medengphy.2010.01.001
30.
Li
,
S.
,
Zhang
,
Y.
,
Gu
,
Y.
, and
Ren
,
J.
,
2017
, “
Stress Distribution of Metatarsals During Forefoot Strike Versus Rearfoot Strike: A Finite Element Study
,”
Comput. Biol. Med.
,
91
, pp.
38
46
.10.1016/j.compbiomed.2017.09.018
31.
Cho
,
J. R.
,
Lee
,
D. Y.
, and
Ahn
,
Y. J.
,
2016
, “
Finite Element Investigation of the Biomechanical Responses of Human Foot to the Heel Height and a Rigid Hemisphere Cleat
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
4269
4274
.10.1007/s12206-016-0839-5
32.
Isvilanonda
,
V.
,
Dengler
,
E.
,
Iaquinto
,
J. M.
,
Sangeorzan
,
B. J.
, and
Ledoux
,
W. R.
,
2012
, “
Finite Element Analysis of the Foot: Model Validation and Comparison Between Two Common Treatments of the Clawed Hallux Deformity
,”
Clin. Biomech. (Bristol, Avon)
,
27
(
8
), pp.
837
844
.10.1016/j.clinbiomech.2012.05.005
33.
Fontanella
,
C. G.
,
Carniel
,
E. L.
,
Macchi
,
V.
,
Porzionato
,
A.
,
De Caro
,
R.
, and
Natali
,
A. N.
,
2017
, “
Biomechanical Response of the Plantar Tissues of the Foot in Healthy and Degenerative Conditions
,”
Muscles Ligaments Tendons J.
,
7
(
4
), pp.
503
509
.10.11138/mltj/2017.7.4.503
34.
Cheng
,
H. Y.
,
Lin
,
C. L.
,
Wang
,
H. W.
, and
Chou
,
S. W.
,
2008
, “
Finite Element Analysis of Plantar Fascia Under Stretch-the Relative Contribution of Windlass Mechanism and Achilles Tendon Force
,”
J. Biomech.
,
41
(
9
), pp.
1937
1944
.10.1016/j.jbiomech.2008.03.028
35.
Gefen
,
A.
,
2002
, “
Stress Analysis of the Standing Foot Following Surgical Plantar Fascia Release
,”
J. Biomech.
,
35
(
5
), pp.
629
637
.10.1016/S0021-9290(01)00242-1
36.
Chen
,
T. L.
,
Wong
,
D. W.
,
Wang
,
Y.
,
Lin
,
J.
, and
Zhang
,
M.
,
2019
, “
Foot Arch Deformation and Plantar Fascia Loading During Running With Rearfoot Strike and Forefoot Strike: A Dynamic Finite Element Analysis
,”
J. Biomech.
,
83
, pp.
260
272
.10.1016/j.jbiomech.2018.12.007
37.
Chen
,
Y. N.
,
Chang
,
C. W.
,
Li
,
C. T.
,
Chang
,
C. H.
, and
Lin
,
C. F.
,
2015
, “
Finite Element Analysis of Plantar Fascia During Walking: A Quasi-Static Simulation
,”
Foot Ankle Int.
,
36
(
1
), pp.
90
97
.10.1177/1071100714549189
38.
Cheung
,
J. T.
,
An
,
K. N.
, and
Zhang
,
M.
,
2006
, “
Consequences of Partial and Total Plantar Fascia Release: A Finite Element Study
,”
Foot Ankle Int.
,
27
(
2
), pp.
125
132
.10.1177/107110070602700210
39.
Vijayaragavan
,
E.
, and
Gopal
,
T. V.
,
2016
, “
Biomechanical Modeling of Human Foot Using Finite Element Methods
,”
Indian J. Sci. Technol.
,
9
(
31
). 10.17485/ijst/2016/v9i31/93412
40.
Cheung
,
J. T.-M.
, and
Nigg
,
B. M.
,
2008
, “
Clinical Applications of Computational Simulation of Foot and Ankle
,”
Sport-Orthop. Sport-Traumatol. Sports Orthop. Traumatol.
,
23
(
4
), pp.
264
271
.10.1016/j.orthtr.2007.11.001
41.
Filardi
,
V.
,
2018
, “
Finite Element Analysis of the Foot: Stress and Displacement Shielding
,”
J. Orthop.
,
15
(
4
), pp.
974
979
.10.1016/j.jor.2018.08.037
42.
Guo
,
J. C.
,
Wang
,
L. Z.
,
Mo
,
Z. J.
,
Chen
,
W.
, and
Fan
,
Y. B.
,
2015
, “
Biomechanical Analysis of Suture Locations of the Distal Plantar Fascia in Partial Foot
,”
Int. Orthop.
,
39
(
12
), pp.
2373
2380
.10.1007/s00264-015-2889-1
43.
Larrainzar-Garijo
,
R.
,
Cifuentes de la Portilla
,
C.
,
Gutiérrez-Narvarte
,
B.
,
Díez-Nicolás
,
E.
, and
Bayod
,
J.
,
2019
, “
Effect of the Calcaneal Medializing Osteotomy on Soft Tissues Supporting the Plantar Arch: A Computational Study
,”
Rev. Esp. Cir. Ortop. Traumatol.
,
63
(
2
), pp.
155
163
.10.1016/j.recote.2019.02.001
44.
Liang
,
J.
,
Yang
,
Y.
,
Yu
,
G.
,
Niu
,
W.
, and
Wang
,
Y.
,
2011
, “
Deformation and Stress Distribution of the Human Foot After Plantar Ligaments Release: A Cadaveric Study and Finite Element Analysis
,”
Sci. China Life Sci.
,
54
(
3
), pp.
267
271
.10.1007/s11427-011-4139-0
45.
Mao
,
R.
,
Guo
,
J.
,
Luo
,
C.
,
Fan
,
Y.
,
Wen
,
J.
, and
Wang
,
L.
,
2017
, “
Biomechanical Study on Surgical Fixation Methods for Minimally Invasive Treatment of Hallux Valgus
,”
Med. Eng. Phys.
,
46
, pp.
21
26
.10.1016/j.medengphy.2017.04.010
46.
Morales-Orcajo
,
E.
,
Souza
,
T. R.
,
Bayod
,
J.
, and
Barbosa de Las Casas
,
E.
,
2017
, “
Non-Linear Finite Element Model to Assess the Effect of Tendon Forces on the Foot-Ankle Complex
,”
Med. Eng. Phys.
,
49
, pp.
71
78
.10.1016/j.medengphy.2017.07.010
47.
Tao
,
K.
,
Ji
,
W. T.
,
Wang
,
D. M.
,
Wang
,
C. T.
, and
Wang
,
X.
,
2010
, “
Relative Contributions of Plantar Fascia and Ligaments on the Arch Static Stability: A Finite Element Study
,”
Biomed. Tech. (Berl)
,
55
(
5
), pp.
265
271
.10.1515/bmt.2010.041
48.
Wang
,
Z.
,
Kido
,
M.
,
Imai
,
K.
,
Ikoma
,
K.
, and
Hirai
,
S.
,
2018
, “
Towards Patient-Specific Medializing Calcaneal Osteotomy for Adult Flatfoot: A Finite Element Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
4
), pp.
332
343
.10.1080/10255842.2018.1452202
49.
Xu
,
J.
,
Ma
,
X.
,
Wang
,
D.
,
Lu
,
W.
,
Zhu
,
W.
,
Ouyang
,
K.
,
Liu
,
H.
,
Li
,
H.
, and
Jiang
,
L.
,
2017
, “
Comparison of Extraosseous Talotarsal Stabilization Implants in a Stage II Adult-Acquired Flatfoot Model: A Finite Element Analysis
,”
J. Foot Ankle Surg.
,
56
(
5
), pp.
1058
1064
.10.1053/j.jfas.2017.05.009
50.
Yu
,
J.
,
Wong
,
D. W.
,
Zhang
,
H.
,
Luo
,
Z. P.
, and
Zhang
,
M.
,
2016
, “
The Influence of High-Heeled Shoes on Strain and Tension Force of the Anterior Talofibular Ligament and Plantar Fascia During Balanced Standing and Walking
,”
Med. Eng. Phys.
,
38
(
10
), pp.
1152
1156
.10.1016/j.medengphy.2016.07.009
51.
Zhang
,
Y.
,
Awrejcewicz
,
J.
,
Baker
,
J. S.
, and
Gu
,
Y.
,
2018
, “
Cartilage Stiffness Effect on Foot Biomechanics of Chinese Bound Foot: A Finite Element Analysis
,”
Front Physiol.
,
9
, p.
1434
.10.3389/fphys.2018.01434
52.
Zhang
,
Y.
,
Awrejcewicz
,
J.
,
Szymanowska
,
O.
,
Shen
,
S.
,
Zhao
,
X.
,
Baker
,
J. S.
, and
Gu
,
Y.
,
2018
, “
Effects of Severe Hallux Valgus on Metatarsal Stress and the Metatarsophalangeal Loading During Balanced Standing: A Finite Element Analysis
,”
Comput. Biol. Med.
,
97
, pp.
1
7
.10.1016/j.compbiomed.2018.04.010
53.
Cifuentes-De la Portilla
,
C.
,
Larrainzar-Garijo
,
R.
, and
Bayod
,
J.
,
2019
, “
Biomechanical Stress Analysis of the Main Soft Tissues Associated With the Development of Adult Acquired Flatfoot Deformity
,”
Clin. Biomech. (Bristol, Avon)
,
61
, pp.
163
171
.10.1016/j.clinbiomech.2018.12.009
54.
Cifuentes-De la Portilla
,
C.
,
Larrainzar-Garijo
,
R.
, and
Bayod
,
J.
,
2020
, “
Analysis of Biomechanical Stresses Caused by Hindfoot Joint Arthrodesis in the Treatment of Adult Acquired Flatfoot Deformity: A Finite Element Study
,”
Foot Ankle Surg.
,
26
(
4
), pp.
412
420
.10.1016/j.fas.2019.05.010
55.
Cifuentes-De la Portilla
,
C.
,
Larrainzar-Garijo
,
R.
, and
Bayod
,
J.
,
2019
, “
Analysis of the Main Passive Soft Tissues Associated With Adult Acquired Flatfoot Deformity Development: A Computational Modeling Approach
,”
J. Biomech.
,
84
, pp.
183
190
.10.1016/j.jbiomech.2018.12.047
56.
Wong
,
D. W.
,
Wang
,
Y.
,
Leung
,
A. K.
,
Yang
,
M.
, and
Zhang
,
M.
,
2018
, “
Finite Element Simulation on Posterior Tibial Tendinopathy: Load Transfer Alteration and Implications to the Onset of Pes Planus
,”
Clin. Biomech. (Bristol, Avon)
,
51
, pp.
10
16
.10.1016/j.clinbiomech.2017.11.001
57.
Brilakis
,
E.
,
Kaselouris
,
E.
,
Xypnitos
,
F.
,
Provatidis
,
C. G.
, and
Efstathopoulos
,
N.
,
2012
, “
Effects of Foot Posture on Fifth Metatarsal Fracture Healing: A Finite Element Study
,”
J. Foot Ankle Surg.
,
51
(
6
), pp.
720
728
.10.1053/j.jfas.2012.08.006
58.
Spratley
,
E. M.
,
Matheis
,
E. A.
,
Hayes
,
C. W.
,
Adelaar
,
R. S.
, and
Wayne
,
J. S.
,
2013
, “
Validation of a Population of Patient-Specific Adult Acquired Flatfoot Deformity Models
,”
J. Orthop. Res.
,
31
(
12
), pp.
1861
1868
.10.1002/jor.22471
59.
Siegler
,
S.
,
Block
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Mechanical Characteristics of the Collateral Ligaments of the Human Ankle Joint
,”
Foot Ankle
,
8
(
5
), pp.
234
242
.10.1177/107110078800800502
60.
Liu
,
X.
, and
Zhang
,
M.
,
2013
, “
Redistribution of Knee Stress Using Laterally Wedged Insole Intervention: Finite Element Analysis of Knee-Ankle-Foot Complex
,”
Clin. Biomech.
,
28
(
1
), pp.
61
67
.10.1016/j.clinbiomech.2012.10.004
61.
Liu
,
Y.
,
Zhou
,
Q.
,
Gan
,
S.
, and
Nie
,
B.
,
2020
, “
Influence of Population Variability in Ligament Material Properties on the Mechanical Behavior of Ankle: A Computational Investigation
,”
Comput. Methods Biomech. Biomed. Eng.
,
23
(
2
), pp.
43
53
.10.1080/10255842.2019.1699541
62.
Wang
,
D.
, and
Cai
,
P.
,
2019
, “
Finite Element Analysis of the Expression of Plantar Pressure Distribution in the Injury of the Lateral Ligament of the Ankle
,”
Nano Biomed. Eng.
,
11
(
3
), pp.
290
296
.10.5101/nbe.v11i3.p290-296
63.
Zhang
,
M. Y.
,
Xu
,
C.
, and
Li
,
K. H.
,
2011
, “
Finite Element Analysis of Nonanatomic Tenodesis Reconstruction Methods of Combined Anterior Talofibular Ligament and Calcaneofibular Ligament Deficiency
,”
Foot Ankle Int.
,
32
(
10
), pp.
1000
1008
.10.3113/FAI.2011.1000
64.
Shin
,
J.
,
Yue
,
N.
, and
Untaroiu
,
C. D.
,
2012
, “
A Finite Element Model of the Foot and Ankle for Automotive Impact Applications
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2519
2531
.10.1007/s10439-012-0607-3
65.
Xu
,
C.
,
Li
,
M. Q.
,
Wang
,
C.
, and
Liu
,
H.
,
2019
, “
Nonanatomic Versus Anatomic Techniques in Spring Ligament Reconstruction: Biomechanical Assessment Via a Finite Element Model
,”
J. Orthop. Surg. Res.
,
14
(
1
), p.
114
.10.1186/s13018-019-1154-5
66.
Zhou
,
L.
,
Lin
,
J.
,
Wang
,
B.
,
Gan
,
W.
,
Huang
,
A.
, and
Lin
,
Y.
,
2020
, “
Biomechanical Effect of Anterior Talofibular Ligament Injury in Weber B Lateral Malleolus Fractures After Lateral Plate Fixation: A Finite Element Analysis
,”
Foot Ankle Surg.
,
26
(
8
), pp.
871
875
.10.1016/j.fas.2019.11.004
67.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.10.1115/1.429623
68.
Gefen
,
A.
,
2003
, “
Plantar Soft Tissue Loading Under the Medial Metatarsals in the Standing Diabetic Foot
,”
Med. Eng. Phys.
,
25
(
6
), pp.
491
499
.10.1016/S1350-4533(03)00029-8
69.
Cheung
,
J. T.
,
Zhang
,
M.
, and
An
,
K. N.
,
2006
, “
Effect of Achilles Tendon Loading on Plantar Fascia Tension in the Standing Foot
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
2
), pp.
194
203
.10.1016/j.clinbiomech.2005.09.016
70.
Bandak
,
F. A.
,
Tannous
,
R. E.
, and
Toridis
,
T.
,
2001
, “
On the Development of an Osseo-Ligamentous Finite Element Model of the Human Ankle Joint
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1681
1697
.10.1016/S0020-7683(00)00129-3
71.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate in Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
72.
Li
,
H.
,
Chen
,
Y.
,
Qiang
,
M.
,
Zhang
,
K.
,
Jiang
,
Y.
,
Zhang
,
Y.
, and
Jia
,
X.
,
2018
, “
Computational Biomechanical Analysis of Postoperative Inferior Tibiofibular Syndesmosis: A Modified Modeling Method
,”
Comput Methods Biomech. Biomed. Eng.
,
21
(
5
), pp.
427
435
.10.1080/10255842.2018.1472770
73.
Filardi
,
V.
,
2018
, “
Flatfoot and Normal Foot a Comparative Analysis of the Stress Shielding
,”
J. Orthop.
,
15
(
3
), pp.
820
825
.10.1016/j.jor.2018.08.002
74.
Su
,
S.
,
Mo
,
Z.
,
Guo
,
J.
, and
Fan
,
Y.
,
2017
, “
The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot
,”
J. Healthc. Eng.
,
2017
, pp.
1
9
.10.1155/2017/8614341
75.
Xu
,
C.
,
Zhang
,
M. Y.
,
Lei
,
G. H.
,
Zhang
,
C.
,
Gao
,
S. G.
,
Ting
,
W.
, and
Li
,
K. H.
,
2012
, “
Biomechanical Evaluation of Tenodesis Reconstruction in Ankle With Deltoid Ligament Deficiency: A Finite Element Analysis
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
20
(
9
), pp.
1854
1862
.10.1007/s00167-011-1762-z
76.
Chatzistergos
,
P. E.
,
Naemi
,
R.
, and
Chockalingam
,
N.
,
2015
, “
A Method for Subject-Specific Modelling and Optimisation of the Cushioning Properties of Insole Materials Used in Diabetic Footwear
,”
Med. Eng. Phys.
,
37
(
6
), pp.
531
538
.10.1016/j.medengphy.2015.03.009
77.
Cheung
,
J. T.
, and
Zhang
,
M.
,
2008
, “
Parametric Design of Pressure-Relieving Foot Orthosis Using Statistics-Based Finite Element Method
,”
Med. Eng. Phys.
,
30
(
3
), pp.
269
277
.10.1016/j.medengphy.2007.05.002
78.
Liu
,
X.
,
Ouyang
,
J.
,
Fan
,
Y. B.
, and
Zhang
,
M.
,
2016
, “
A Footwear-Foot-Knee Computational Platform for Exploring Footwear Effects on Knee Joint Biomechanics
,”
J. Med. Biol. Eng.
,
36
(
2
), pp.
245
256
.10.1007/s40846-016-0126-z
79.
Yu
,
J.
,
Cheung
,
J. T.
,
Wong
,
D. W.
,
Cong
,
Y.
, and
Zhang
,
M.
,
2013
, “
Biomechanical Simulation of High-Heeled Shoe Donning and Walking
,”
J. Biomech.
,
46
(
12
), pp.
2067
2074
.10.1016/j.jbiomech.2013.05.009
80.
Zhang
,
M., 2011
, Computational Foot-Ankle-Knee Models for Joint Biomechanics and Footwear Design, A. Wittek, P. Nielsen, and K. Miller, eds., Computational Biomechanics for Medicine, Springer, New York.
81.
Tang
,
L.
,
Wang
,
L.
,
Bao
,
W.
,
Zhu
,
S.
,
Li
,
D.
,
Zhao
,
N.
, and
Liu
,
C.
,
2019
, “
Functional Gradient Structural Design of Customized Diabetic Insoles
,”
J. Mech. Behav. Biomed. Mater.
,
94
, pp.
279
287
.10.1016/j.jmbbm.2019.03.003
82.
Guiotto
,
A.
,
Sawacha
,
Z.
,
Guarneri
,
G.
,
Avogaro
,
A.
, and
Cobelli
,
C.
,
2014
, “
3D Finite Element Model of the Diabetic Neuropathic Foot: A Gait Analysis Driven Approach
,”
J. Biomech.
,
47
(
12
), pp.
3064
3071
.10.1016/j.jbiomech.2014.06.029
83.
Cheung
,
J. T.
,
Zhang
,
M.
,
Leung
,
A. K.
, and
Fan
,
Y. B.
,
2005
, “
Three-Dimensional Finite Element Analysis of the Foot During Standing–A Material Sensitivity Study
,”
J. Biomech.
,
38
(
5
), pp.
1045
1054
.10.1016/j.jbiomech.2004.05.035
84.
Petershagen
,
C.
,
Soyarslan
,
C.
,
Çakan
,
B. G.
, and
Bargmann
,
S.
,
Computational Modeling of Stress Development in Metatarsals—on the Importance of Plantar Aponeurosis
,”
J. Coupled Sys. Multiscale Dynamics
,
5
(
2
), pp.
111
118
.10.1166/jcsmd.2017.1126
85.
Cheung
,
J. T.
, and
Zhang
,
M.
,
2005
, “
A 3-Dimensional Finite Element Model of the Human Foot and Ankle for Insole Design
,”
Arch. Phys. Med. Rehabil.
,
86
(
2
), pp.
353
358
.10.1016/j.apmr.2004.03.031
86.
Wang
,
Y.
,
Li
,
Z.
, and
Zhang
,
M.
,
2014
, “
Biomechanical Study of Tarsometatarsal Joint Fusion Using Finite Element Analysis
,”
Med. Eng. Phys.
,
36
(
11
), pp.
1394
1400
.10.1016/j.medengphy.2014.03.014
87.
Wai-Chi Wong
,
D.
,
Wang
,
Y.
,
Zhang
,
M.
, and
Kam-Lun Leung
,
A.
,
2015
, “
Functional Restoration and Risk of Non-Union of the First Metatarsocuneiform Arthrodesis for Hallux Valgus: A Finite Element Approach
,”
J. Biomech.
,
48
(
12
), pp.
3142
3148
.10.1016/j.jbiomech.2015.07.013
88.
Wang
,
Y.
,
Li
,
Z.
,
Wong
,
D. W.
, and
Zhang
,
M.
,
2015
, “
Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot
,”
PLoS One
,
10
(
7
), p.
e0134340
.10.1371/journal.pone.0134340
89.
Nie
,
B.
,
Forman
,
J. L.
,
Mait
,
A. R.
,
Donlon
,
J. P.
,
Panzer
,
M. B.
, and
Kent
,
R. W.
,
2017
, “
Searching for the “Sweet Spot”: the Foot Rotation and Parallel Engagement of Ankle Ligaments in Maximizing Injury Tolerance
,”
Biomech. Model Mechanobiol.
,
16
(
6
), pp.
1937
1945
.10.1007/s10237-017-0929-z
90.
Ramlee
,
M. H.
,
Sulong
,
M. A.
,
Garcia-Nieto
,
E.
,
Penaranda
,
D. A.
,
Felip
,
A. R.
, and
Kadir
,
M. R. A.
,
2018
, “
Biomechanical Features of Six Design of the Delta External Fixator for Treating Pilon Fracture: A Finite Element Study
,”
Med. Biol. Eng. Comput.
,
56
(
10
), pp.
1925
1938
.10.1007/s11517-018-1830-3
91.
Alonso Rasgado
,
T.
,
Zhang
,
Q.
,
Jimenez Cruz
,
D.
,
Bailey
,
C.
,
Pinder
,
E.
,
Mandaleson
,
A.
, and
Talwalkar
,
S.
,
2017
, “
Analysis of Tenodesis Techniques for Treatment of Scapholunate Instability Using the Finite Element Method
,”
Int. J. Numer. Method Biomed. Eng.
,
33
(
12
), p. e2897.10.1002/cnm.2897
92.
Wong
,
D. W.
,
Niu
,
W.
,
Wang
,
Y.
, and
Zhang
,
M.
,
2016
, “
Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture
,”
PLoS One
,
11
(
4
), p.
e0154435
.10.1371/journal.pone.0154435
93.
Bodzay
,
T.
,
Floris
,
I.
, and
Varadi
,
K.
,
2011
, “
Comparison of Stability in the Operative Treatment of Pelvic Injuries in a Finite Element Model
,”
Arch. Orthop. Trauma Surg.
,
131
(
10
), pp.
1427
1433
.10.1007/s00402-011-1324-3
94.
Wang
,
C. W.
,
Muheremu
,
A.
, and
Bai
,
J. P.
,
2018
, “
Use of Three-Dimensional Finite Element Models of the Lateral Ankle Ligaments to Evaluate Three Surgical Techniques
,”
J. Int. Med. Res.
,
46
(
2
), pp.
699
709
.10.1177/0300060517727941
95.
Gu
,
Y. D.
,
Liang
,
M. J.
, and
Li
,
Z. Y.
,
2014
, “
Deep Transverse Metatarsal Ligaments Mechanical Response During Landing
,”
J. Chem. Pharm. Res.
,
6
(
4
), pp.
762
765
.https://www.jocpr.com/articles/deep-transversemetatarsal-ligaments-mechanical-response-during-landing.pdf
96.
Wong
,
D. W.
,
Wang
,
Y.
,
Chen
,
T. L.
,
Yan
,
F.
,
Peng
,
Y.
,
Tan
,
Q.
,
Ni
,
M.
,
Leung
,
A. K.
, and
Zhang
,
M.
,
2020
, “
Finite Element Analysis of Generalized Ligament Laxity on the Deterioration of Hallux Valgus Deformity (Bunion)
,”
Front. Bioeng. Biotechnol.
,
8
, p.
571192
.10.3389/fbioe.2020.571192
97.
Wang
,
Z.
,
Imai
,
K.
,
Kido
,
M.
,
Ikoma
,
K.
, and
Hirai
,
S.
,
2014
, “
A Finite Element Model of Flatfoot (Pes Planus) for Improving Surgical Plan
,”
Annual International Conference IEEE Engineering Medical Biology Society
, Chicago, IL, Aug. 26–30, pp.
844
847
.10.1109/EMBC.2014.6943723
98.
Guo
,
J. C.
,
Wang
,
L. Z.
,
Chen
,
W.
,
Du
,
C. F.
,
Mo
,
Z. J.
, and
Fan
,
Y. B.
,
2016
, “
Parametric Study of Orthopedic Insole of Valgus Foot on Partial Foot Amputation
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
8
), pp.
894
900
.10.1080/10255842.2015.1076803
99.
Liacouras
,
P. C.
, and
Wayne
,
J. S.
,
2007
, “
Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
811
817
.10.1115/1.2800763
100.
Tao
,
K.
,
Wang
,
D. M.
,
Wang
,
C. T.
,
Wang
,
X.
,
Liu
,
A. M.
,
Nester
,
C. J.
, and
Howard
,
D.
,
2009
, “
An In Vivo Experimental Validation of a Computational Model of Human Foot
,”
J. Bionic Eng.
,
6
(
4
), pp.
387
397
.10.1016/S1672-6529(08)60138-9
101.
Wei
,
F.
,
Braman
,
J. E.
,
Weaver
,
B. T.
, and
Haut
,
R. C.
,
2011
, “
Determination of Dynamic Ankle Ligament Strains From a Computational Model Driven by Motion Analysis Based Kinematic Data
,”
J. Biomech.
,
44
(
15
), pp.
2636
2641
.10.1016/j.jbiomech.2011.08.010
102.
Wu
,
L.
,
2007
, “
Nonlinear Finite Element Analysis for Musculoskeletal Biomechanics of Medial and Lateral Plantar Longitudinal Arch of Virtual Chinese Human After Plantar Ligamentous Structure Failures
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
2
), pp.
221
229
.10.1016/j.clinbiomech.2006.09.009
103.
Ji
,
W. T.
,
Tao
,
K.
,
Wang
,
D. M.
,
Wang
,
C. T.
, and
Wang
,
X.
,
2010
, “
Mechanical Behaviors of the Foot After Individual Releases of Plantar Fascia and Ligaments During the Balanced Standing
,”
J. Shanghai Jiaotong Univ. Sci.
,
15
(
6
), pp.
726
729
.10.1007/s12204-010-1076-1
104.
Qiu
,
T. X.
,
Teo
,
E. C.
,
Yan
,
Y. B.
, and
Lei
,
W.
,
2011
, “
Finite Element Modeling of a 3D Coupled Foot-Boot Model
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1228
1233
.10.1016/j.medengphy.2011.05.012
105.
Chen
,
W. M.
,
Park
,
J.
,
Park
,
S. B.
,
Shim
,
V. P.
, and
Lee
,
T.
,
2012
, “
Role of Gastrocnemius-Soleus Muscle in Forefoot Force Transmission at Heel Rise—A 3D Finite Element Analysis
,”
J. Biomech.
,
45
(
10
), pp.
1783
1789
.10.1016/j.jbiomech.2012.04.024
106.
Forestiero
,
A.
,
Carniel
,
E. L.
, and
Natali
,
A. N.
,
2014
, “
Biomechanical Behaviour of Ankle Ligaments: Constitutive Formulation and Numerical Modelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
4
), pp.
395
404
.10.1080/10255842.2012.688105
107.
Iwamoto
,
M.
,
Miki
,
K.
,
Mohammad
,
M.
,
Nayef
,
A.
,
Yang
,
K. H.
,
Begeman
,
P. C.
, and
King
,
A. I.
,
2000
, “
Development of a Finite Element Model of the Human Shoulder
,”
Stapp Car Crash J.
,
44
, pp.
281
297
.http://www.pubmed.ncbi.nlm.nih.gov/17458732/
108.
Jamshidi
,
N.
,
Hanife
,
H.
,
Rostami
,
M.
,
Najarian
,
S.
,
Menhaj
,
M. B.
,
Saadatnia
,
M.
, and
Salami
,
F.
,
2010
, “
Modelling the Interaction of Ankle-Foot Orthosis and Foot by Finite Element Methods to Design an Optimized Sole in Steppage Gait
,”
J. Med. Eng. Technol.
,
34
(
2
), pp.
116
123
.10.3109/03091900903402063
109.
Liu
,
Q.
,
Zhang
,
K.
,
Zhuang
,
Y.
,
Li
,
Z.
,
Yu
,
B.
, and
Pei
,
G.
,
2013
, “
Analysis of the Stress and Displacement Distribution of Inferior Tibiofibular Syndesmosis Injuries Repaired With Screw Fixation: A Finite Element Study
,”
PLoS One
,
8
(
12
), p.
e80236
.10.1371/journal.pone.0080236
110.
Liu
,
Q.
,
Zhao
,
G.
,
Yu
,
B.
,
Ma
,
J.
,
Li
,
Z.
, and
Zhang
,
K.
,
2016
, “
Effects of Inferior Tibiofibular Syndesmosis Injury and Screw Stabilization on Motion of the Ankle: A Finite Element Study
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
24
(
4
), pp.
1228
1235
.10.1007/s00167-014-3320-y
111.
Ou
,
H.
,
Qaiser
,
Z.
,
Kang
,
L.
, and
Johnson
,
S.
,
2018
, “
Effect of Skin on Finite Element Modeling of Foot and Ankle During Balanced Standing
,”
J. Shanghai Jiaotong Univ. Sci.
,
23
(
1
), pp.
132
137
.10.1007/s12204-018-1918-9
112.
Chen
,
T. L.
,
Wong
,
D. W.
,
Peng
,
Y.
, and
Zhang
,
M.
,
2020
, “
Prediction on the Plantar Fascia Strain Offload Upon Fascia Taping and Low-Dye Taping During Running
,”
J. Orthop. Translat.
,
20
, pp.
113
121
.10.1016/j.jot.2019.06.006
113.
Mondal
,
S.
, and
Ghosh
,
R.
,
2017
, “
A Numerical Study on Stress Distribution Across the Ankle Joint: Effects of Material Distribution of Bone, Muscle Force and Ligaments
,”
J. Orthop.
,
14
(
3
), pp.
329
335
.10.1016/j.jor.2017.05.003
114.
Park
,
S.
,
Lee
,
S.
,
Yoon
,
J.
, and
Chae
,
S. W.
,
2019
, “
Finite Element Analysis of Knee and Ankle Joint During Gait Based on Motion Analysis
,”
Med. Eng. Phys.
,
63
, pp.
33
41
.10.1016/j.medengphy.2018.11.003
115.
Wong
,
D. W.
,
Zhang
,
M.
,
Yu
,
J.
, and
Leung
,
A. K.
,
2014
, “
Biomechanics of First Ray Hypermobility: An Investigation on Joint Force During Walking Using Finite Element Analysis
,”
Med. Eng. Phys.
,
36
(
11
), pp.
1388
1393
.10.1016/j.medengphy.2014.03.004
116.
Shin
,
J.
, and
Untaroiu
,
C. D.
,
2013
, “
Biomechanical and Injury Response of Human Foot and Ankle Under Complex Loading
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101008
.10.1115/1.4025108
117.
Bogey
,
R. A.
,
Perry
,
J.
, and
Gitter
,
A. J.
,
2005
, “
An EMG-to-Force Processing Approach for Determining Ankle Muscle Forces During Normal Human Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
302
310
.10.1109/TNSRE.2005.851768
118.
Zhang
,
Y. J.
,
Guo
,
Y.
,
Long
,
X.
,
Du
,
J. Y.
,
Liu
,
T.
, and
Lin
,
X. J.
,
2021
, “
Analysis of the Main Soft Tissue Stress Associated With Flexible Flatfoot Deformity: A Finite Element Study
,”
Biomech. Model. Mechanobiol.
,
20
(
6
), pp.
2169
2177
.10.1007/s10237-021-01500-1
119.
Lochner
,
S. J.
,
Huissoon
,
J. P.
, and
Bedi
,
S. S.
,
2014
, “
Development of a Patient-Specific Anatomical Foot Model From Structured Light Scan Data
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
11
), pp.
1198
1205
.10.1080/10255842.2012.739165
120.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
,
Benvenuti
,
J.-F.
, and
Leyvraz
,
P.-F.
,
1998
, “
Viscoelastic Constitutive Law in Large Deformations: Application to Human Knee Ligaments and Tendons
,”
J. Biomech.
,
31
(
8
), pp.
753
757
.10.1016/S0021-9290(98)00077-3
121.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2007
, “
An Anisotropic Visco-Hyperelastic Model for Ligaments at Finite Strains. Formulation and Computational Aspects
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
760
778
.10.1016/j.ijsolstr.2006.05.018
122.
Budhabhatti
,
S. P.
,
Erdemir
,
A.
,
Petre
,
M.
,
Sferra
,
J.
,
Donley
,
B.
, and
Cavanagh
,
P. R.
,
2007
, “
Finite Element Modeling of the First Ray of the Foot: A Tool for the Design of Interventions
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
750
756
.10.1115/1.2768108
123.
Spirka
,
T. A.
,
Erdemir
,
A.
,
Ewers Spaulding
,
S.
,
Yamane
,
A.
,
Telfer
,
S.
, and
Cavanagh
,
P. R.
,
2014
, “
Simple Finite Element Models for Use in the Design of Therapeutic Footwear
,”
J. Biomech.
,
47
(
12
), pp.
2948
2955
.10.1016/j.jbiomech.2014.07.020
124.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Machine Learning Approach as a Surrogate of Finite Element Analysis-Based Inverse Method to Estimate the Zero-Pressure Geometry of Human Thoracic Aorta
,”
Int. J. Numer. Method Biomed. Eng.
,
34
(
8
), p.
e3103
.10.1002/cnm.3103
125.
Mehrizi
,
R.
,
Peng
,
X.
,
Xu
,
X.
,
Zhang
,
S.
, and
Li
,
K.
,
2019
, “
A Deep Neural Network-Based Method for Estimation of 3D Lifting Motions
,”
J. Biomech.
,
84
, pp.
87
93
.10.1016/j.jbiomech.2018.12.022
126.
Lee
,
Y.-T.
,
Wu
,
T.-H.
,
Lin
,
M.-L.
, and
Ko
,
C.-C.
,
2021
, “
Machine (Deep) Learning and Finite Element Modeling
,”
Machine Learning in Dentistry
,
C.-C.
Ko
,
D.
Shen
, and
L.
Wang
, eds.,
Springer International Publishing
,
Cham
, pp.
183
188
.
127.
Saxby
,
D. J.
,
Killen
,
B. A.
,
Pizzolato
,
C.
,
Carty
,
C. P.
,
Diamond
,
L. E.
,
Modenese
,
L.
,
Fernandez
,
J.
,
Davico
,
G.
,
Barzan
,
M.
,
Lenton
,
G.
,
da Luz
,
S. B.
,
Suwarganda
,
E.
,
Devaprakash
,
D.
,
Korhonen
,
R. K.
,
Alderson
,
J. A.
,
Besier
,
T. F.
,
Barrett
,
R. S.
, and
Lloyd
,
D. G.
,
2020
, “
Machine Learning Methods to Support Personalized Neuromusculoskeletal Modelling
,”
Biomech. Model. Mechanobiol.
,
19
(
4
), pp.
1169
1185
.10.1007/s10237-020-01367-8
128.
Phellan
,
R.
,
Hachem
,
B.
,
Clin
,
J.
,
Mac-Thiong
,
J. M.
, and
Duong
,
L.
,
2021
, “
Real-Time Biomechanics Using the Finite Element Method and Machine Learning: Review and Perspective
,”
Med. Phys.
,
48
(
1
), pp.
7
18
.10.1002/mp.14602
129.
Pellicer-Valero
,
O. J.
,
Rupérez
,
M. J.
,
Martínez-Sanchis
,
S.
, and
Martín-Guerrero
,
J. D.
,
2020
, “
Real-Time Biomechanical Modeling of the Liver Using Machine Learning Models Trained on Finite Element Method Simulations
,”
Expert Syst. Appl.
,
143
, p.
113083
.10.1016/j.eswa.2019.113083
130.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Deep Learning Approach to Estimate Stress Distribution: A Fast and Accurate Surrogate of Finite-Element Analysis
,”
J. R. Soc. Interface
,
15
(
138
), Article No. 20170844.10.1098/rsif.2017.0844
131.
Tarrade
,
T.
,
Dakhil
,
N.
,
Behr
,
M.
,
Salin
,
D.
, and
Llari
,
M.
,
2021
, “
Real-Time Analysis of the Dynamic Foot Function: A Machine Learning and Finite Element Approach
,”
ASME J. Biomech. Eng.
,
143
(
4
), p.
041005
.10.1115/1.4049024
132.
Rudd
,
R.
,
Crandall
,
J.
,
Millington
,
S.
,
Hurwitz
,
S.
, and
Hoglund
,
N.
,
2004
, “
Injury Tolerance and Response of the Ankle Joint in Dynamic Dorsiflexion
,”
Stapp Car Crash J.
,
48
, pp.
1
26
.http://www.pubmed.ncbi.nlm.nih.gov/17230259/
133.
Behforootan
,
S.
,
Chatzistergos
,
P.
,
Naemi
,
R.
, and
Chockalingam
,
N.
,
2017
, “
Finite Element Modelling of the Foot for Clinical Application: A Systematic Review
,”
Med. Eng. Phys.
,
39
, pp.
1
11
.10.1016/j.medengphy.2016.10.011
You do not currently have access to this content.