Abstract

A mechanical goal of in vitro testing systems is to minimize differences between applied and actual forces and moments experienced by spinal units. This study quantified the joint reaction forces and reaction flexion–extension moments during dynamic compression loading imposed throughout the physiological flexion–extension range of motion. Constrained (fixed base) and unconstrained (floating base) testing systems were compared. Sixteen porcine spinal units were assigned to both testing groups. Following conditioning tests, specimens were dynamically loaded for 1 cycle with a 1 Hz compression waveform to a peak load of 1 kN and 2 kN while positioned in five different postures (neutral, 100% and 300% of the flexion and extension neutral zone), totaling ten trials per functional spinal unit (FSU). A six degree-of-freedom force and torque sensor was used to measure peak reaction forces and moments for each trial. Shear reaction forces were significantly greater (25.5 N–85.7 N) when the testing system was constrained compared to unconstrained (p <0.029). The reaction moment was influenced by posture (p =0.037), particularly in C5C6 spinal units. In 300% extension (C5C6), the reaction moment was, on average, 9.9 N·m greater than the applied moment in both testing systems and differed from all other postures (p <0.001). The reaction moment error was, on average, 0.45 N·m at all other postures. In conclusion, these findings demonstrate that comparable reaction moments can be achieved with unconstrained systems, but without inducing appreciable shear reaction forces.

References

1.
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2001
, “
Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion/Extension Motion With Compressive Force
,”
Clin. Biomech.
,
16
(
1
), pp.
28
37
.10.1016/S0268-0033(00)00063-2
2.
Tampier
,
C.
,
Drake
,
J. D.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2007
, “
Progressive Disc Herniation: An Investigation of the Mechanism Using Radiologic, Histochemical, and Microscopic Dissection Techniques on a Porcine Model
,”
Spine
,
32
(
25
), pp.
2869
2874
.10.1097/BRS.0b013e31815b64f5
3.
van Heeswijk
,
V. M.
,
Thambyah
,
A.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
,
2017
, “
Posterolateral Disc Prolapse in Flexion Initiated by Lateral Inner Annular Failure: An Investigation of the Herniation Pathway
,”
Spine (Phila Pa 1976)
,
42
(
21
), pp.
1604
1613
.10.1097/BRS.0000000000002181
4.
Techens
,
C.
,
Palanca
,
M.
,
Éltes
,
P. E.
,
Lazáry
,
Á.
, and
Cristofolini
,
L.
,
2020
, “
Testing the Impact of Discoplasty on the Biomechanics of the Intervertebral Disc With Simulated Degeneration: An In Vitro Study
,”
Med. Eng. Phys.
,
84
, pp.
51
59
.10.1016/j.medengphy.2020.07.024
5.
Minns
,
R. J.
, and
Walsh
,
W. K.
,
1997
, “
Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine
,”
Spine (Phila Pa 1976)
,
22
(
16
), pp.
1819
1825
.10.1097/00007632-199708150-00004
6.
Basra
,
S.
,
Bucklen
,
B.
,
Muzumdar
,
A.
,
Khalil
,
S.
, and
Gudipally
,
M.
,
2015
, “
A Novel Lateral Lumbar Integrated Plate-Spacer Interbody Implant: In Vitro Biomechanical Analysis
,”
Spine J.
,
15
(
2
), pp.
322
328
.10.1016/j.spinee.2014.09.020
7.
Adams
,
M. A.
,
Green
,
T. P.
, and
Dolan
,
P.
,
1994
, “
The Strength in Anterior Bending of Lumbar Intervertebral Discs
,”
Spine
,
19
(
19
), pp.
2197
2203
.10.1097/00007632-199410000-00014
8.
Zehr
,
J. D.
,
Buchman-Pearle
,
J. M.
, and
Callaghan
,
J. P.
,
2020
, “
Joint Fatigue-Failure: A Demonstration of Viscoelastic Responses to Rate and Frequency Loading Parameters Using the Porcine Cervical Spine
,”
J. Biomech.
,
113
, p.
110081
.10.1016/j.jbiomech.2020.110081
9.
Zehr
,
J. D.
,
Tennant
,
L. M.
, and
Callaghan
,
J. P.
,
2019
, “
Incorporating Loading Variability Into In Vitro Injury Analyses and Its Effect on Cumulative Compression Tolerance in Porcine Cervical Spine Units
,”
J. Biomech.
,
88
, pp.
48
54
.10.1016/j.jbiomech.2019.03.011
10.
Parkinson
,
R. J.
, and
Callaghan
,
J. P.
,
2009
, “
The Role of Dynamic Flexion in Spine Injury is Altered by Increasing Dynamic Load Magnitude
,”
Clin. Biomech.
,
24
(
2
), pp.
148
154
.10.1016/j.clinbiomech.2008.11.007
11.
McLachlin
,
S. D.
,
Beaton
,
B. J.
,
Sabo
,
M. T.
,
Gurr
,
K. R.
,
Bailey
,
S. I.
,
Bailey
,
C. S.
, and
Dunning
,
C. E.
,
2008
, “
Comparing the Fixation of a Novel Hollow Screw Versus a Conventional Solid Screw in Human Sacra Under Cyclic Loading
,”
Spine
,
33
(
17
), pp.
1870
1875
.10.1097/BRS.0b013e3181808c75
12.
Lund
,
T.
,
Nydegger
,
T.
,
Rathonyi
,
G.
,
Nolte
,
L. P.
,
Schlenzka
,
D.
, and
Oxland
,
T. R.
,
2003
, “
Three-Dimensional Stabilization Provided by the External Spinal Fixator Compared to Two Internal Fixation Devices: A Biomechanical In Vitro Flexibility Study
,”
Eur. Spine J.
,
12
(
5
), pp.
474
479
.10.1007/s00586-002-0519-2
13.
Cripton
,
P. A.
,
Bruehlmann
,
S. B.
,
Orr
,
T. E.
,
Oxland
,
T. R.
, and
Nolte
,
L.-P.
,
2000
, “
In Vitro Axial Preload Application During Spine Flexibility Testing: Towards Reduced Apparatus-Related Artefacts
,”
J. Biomech.
,
33
(
12
), pp.
1559
1568
.10.1016/S0021-9290(00)00145-7
14.
Wilke
,
H. J.
,
Claes
,
L.
,
Schmitt
,
H.
, and
Wolf
,
S.
,
1994
, “
A Universal Spine Tester for In Vitro Experiments With Muscle Force Simulation
,”
Eur. Spine J.
,
3
(
2
), pp.
91
97
.10.1007/BF02221446
15.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Carandang
,
G.
,
Simonds
,
J.
,
Voronov
,
L. I.
,
Ghanayem
,
A. J.
,
Meade
,
K. P.
,
Gavin
,
T. M.
, and
Paxinos
,
O.
,
2003
, “
Effect of Compressive Follower Preload on the Flexion-Extension Response of the Human Lumbar Spine
,”
J. Orthop. Res.
,
21
(
3
), pp.
540
546
.10.1016/S0736-0266(02)00202-4
16.
Panjabi
,
M. M.
,
1988
, “
Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework
,”
Spine
,
13
(
10
), pp.
1129
1134
.10.1097/00007632-198810000-00013
17.
Ochia
,
R. S.
,
Inoue
,
N.
,
Renner
,
S. M.
,
Lorenz
,
E. P.
,
Lim
,
T. H.
,
Andersson
,
G. B.
, and
An
,
H. S.
,
2006
, “
Three-Dimensional In Vivo Measurement of Lumbar Spine Segmental Motion
,”
Spine
,
31
(
18
), pp.
2073
2078
.10.1097/01.brs.0000231435.55842.9e
18.
Frobin
,
W.
,
Brinckmann
,
P.
,
Leivseth
,
G.
,
Biggemann
,
M.
, and
Reikerås
,
O.
,
1996
, “
Precision Measurement of Segmental Motion From Flexion-Extension Radiographs of the Lumbar Spine
,”
Clin. Biomech.
,
11
(
8
), pp.
457
465
.10.1016/S0268-0033(96)00039-3
19.
Tencer
,
A. F.
, and
Ahmed
,
A. M.
,
1981
, “
The Role of Secondary Variables in the Measurement of the Mechanical Properties of the Lumbar Intervertebral Joint
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
129
137
.10.1115/1.3138268
20.
Aiyangar
,
A.
,
Zheng
,
L.
,
Anderst
,
W.
, and
Zhang
,
X.
,
2017
, “
Instantaneous Centers of Rotation for Lumbar Segmental Extension In Vivo
,”
J. Biomech.
,
52
, pp.
113
121
.10.1016/j.jbiomech.2016.12.021
21.
Bogduk
,
N.
,
Amevo
,
B.
, and
Pearcy
,
M.
,
1995
, “
A Biological Basis for Instantaneous Centres of Rotation of the Vertebral Column
,”
Proc. Inst. Mech. Eng.
,
209
(
3
), pp.
177
183
.10.1243/PIME_PROC_1995_209_341_02
22.
Pearcy
,
M. J.
, and
Bogduk
,
N.
,
1988
, “
Instantaneous Axes of Rotation of the Lumbar Intervertebral Joints
,”
Spine
,
13
(
9
), pp.
1033
1041
.10.1097/00007632-198809000-00011
23.
Gertzbein
,
S. D.
,
Seligman
,
J.
,
Holtby
,
R.
,
Chan
,
K. W.
,
Ogston
,
N.
,
Kapasouri
,
A.
, and
Tile
,
M.
,
1986
, “
Centrode Characteristics of the Lumbar Spine as a Function of Segmental Instability
,”
Clin. Orthop. Relat. Res.
,
208
, pp.
48
51
.https://europepmc.org/article/med/3720138
24.
Busscher
,
I.
,
van der Veen
,
A. J.
,
van Dieën
,
J. H.
,
Kingma
,
I.
,
Verkerke
,
G. J.
, and
Veldhuizen
,
A. G.
,
2010
, “
In Vitro Biomechanical Characteristics of the Spine: A Comparison Between Human and Porcine Spinal Segments
,”
Spine
,
35
(
2
), pp.
E35
42
.10.1097/BRS.0b013e3181b21885
25.
McLain
,
R. F.
,
Yerby
,
S. A.
, and
Moseley
,
T. A.
,
2002
, “
Comparative Morphometry of L4 Verebrae: Comparison of Large Animal Models for the Human Lumbar Spine
,”
Spine
,
27
(
8
), pp.
E200
206
.10.1097/00007632-200204150-00005
26.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
1999
, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disorders
,
12
(
5
), pp.
415
423
.10.1097/00002517-199912050-00012
27.
Galante
,
J. O.
,
1967
, “
Tensile Properties of the Human Annulus Fibrosus
,”
Acta Orthop. Scand. Suppl.
,
38
(
sup100
), pp.
1
91
.10.3109/ort.1967.38.suppl-100.01
28.
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
1995
, “
Frozen Storage Increases the Ultimate Compressive Load of Porcine Vertebrae
,”
J. Orthop. Res.
,
13
(
5
), pp.
809
812
.10.1002/jor.1100130522
29.
Gunning
,
J. L.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2001
, “
Spinal Posture and Prior Loading History Modulate Compressive Strength and Type of Failure in the Spine: A Biomechanical Study Using a Cervical Porcine Model
,”
Clin. Biomech.
,
16
(
6
), pp.
471
480
.10.1016/S0268-0033(01)00032-8
30.
Panjabi
,
M. M.
,
1992
, “
The Stabilizing System of the Spine: Part I: Function, Dysfunction, Adaptation, and Enhancement
,”
J. Spinal Disorders
,
5
(
4
), pp.
383
390
.10.1097/00002517-199212000-00001
31.
Thompson
,
R. E.
,
Barker
,
T. M.
, and
Pearcy
,
M. J.
,
2003
, “
Defining the Neutral Zone of Sheep Intervertebral Joints During Dynamic Motions: An In Vitro Study
,”
Clin. Biomech.
,
18
(
2
), pp.
89
98
.10.1016/S0268-0033(02)00180-8
32.
Gooyers
,
C. E.
, and
Callaghan
,
J. P.
,
2015
, “
Exploring Interactions Between Force, Repetition and Posture on Intervertebral Disc Height Loss and Bulging in Isolated Porcine Cervical Functional Spinal Units From Sub-Acute-Failure Magnitudes of Cyclic Compressive Loading
,”
J. Biomech.
,
48
(
13
), pp.
3701
3708
.10.1016/j.jbiomech.2015.08.023
33.
Gooyers
,
C. E.
,
McMillan
,
E. M.
,
Noguchi
,
M.
,
Quadrilatero
,
J.
, and
Callaghan
,
J. P.
,
2015
, “
Characterizing the Combined Effects of Force, Repetition and Posture on Injury Pathways and Micro-Structural Damage in Isolated Functional Spinal Units From Sub-Acute-Failure Magnitudes of Cyclic Compressive Loading
,”
Clin. Biomech.
,
30
(
9
), pp.
953
959
.10.1016/j.clinbiomech.2015.07.003
34.
Adams
,
M. A.
,
1995
, “
Mechanical Testing of the Spine. An Appraisal of Methodology, Results, and Conclusions
,”
Spine
,
20
(
19
), pp.
2151
2156
.10.1097/00007632-199510000-00015
35.
Putzer
,
M.
,
Ehrlich
,
I.
,
Rasmussen
,
J.
,
Gebbeken
,
N.
, and
Dendorfer
,
S.
,
2016
, “
Sensitivity of Lumbar Spine Loading to Anatomical Parameters
,”
J. Biomech.
,
49
(
6
), pp.
953
968
.10.1016/j.jbiomech.2015.11.003
36.
McGill
,
S. M.
,
Hughson
,
R. L.
, and
Parks
,
K.
,
2000
, “
Changes in Lumbar Lordosis Modify the Role of the Extensor Muscles
,”
Clin. Biomech.
,
15
(
10
), pp.
777
780
.10.1016/S0268-0033(00)00037-1
37.
McGill
,
S. M.
, and
Norman
,
R. W.
,
1986
, “
Partitioning of the L4-L5 Dynamic Moment Into Disc, Ligamentous, and Muscular Components During Lifting
,”
Spine
,
11
(
7
), pp.
666
678
.10.1097/00007632-198609000-00004
38.
Dunlop
,
R. B.
,
Adams
,
M. A.
, and
Hutton
,
W. C.
,
1984
, “
Disc Space Narrowing and the Lumbar Facet Joints
,”
J. Bone Jt. Surg.
,
66-B
(
5
), pp.
706
710
.10.1302/0301-620X.66B5.6501365
39.
McGill
,
S. M.
,
Norman
,
R. W.
,
Yingling
,
V. R.
,
Wells
,
R. W.
, and
Neumann
,
P.
,
1998
, “
Shear Happens! Suggested Guidelines for Ergonomists to Reduce Risk of Low Back Injury From Shear Loading
,”
30th Annual Conference of the Human Factors Association of Canada Mississauga
, ON, Canada, Oct. 19–22, pp.
157
161
.https://www.researchgate.net/publication/268298574_Shear_Happens_Suggested_guidelines_for_ergonomists_to_reduce_the_risk_of_low_back_injury_from_shear_loading
40.
Gallagher
,
S.
, and
Marras
,
W. S.
,
2012
, “
Tolerance of the Lumbar Spine to Shear: A Review and Recommended Exposure Limits
,”
Clin. Biomech.
,
27
(
10
), pp.
973
978
.10.1016/j.clinbiomech.2012.08.009
41.
Dolan
,
P.
,
Earley
,
M.
, and
Adams
,
M. A.
,
1994
, “
Bending and Compressive Stresses Acting on the Lumbar Spine During Lifting Activities
,”
J. Biomech.
,
27
(
10
), pp.
1237
1248
.10.1016/0021-9290(94)90277-1
42.
Gooyers
,
C. E.
,
Beach
,
T. A. C.
,
Frost
,
D. M.
,
Howarth
,
S. J.
, and
Callaghan
,
J. P.
,
2018
, “
Identifying Interactive Effects of Task Demands in Lifting on Estimates of In Vivo Low Back Joint Loads
,”
Appl. Ergon.
,
67
, pp.
203
210
.10.1016/j.apergo.2017.10.005
43.
Beach
,
T. A. C.
,
Coke
,
S. K.
, and
Callaghan
,
J. P.
,
2006
, “
Upper Body Kinematic and Low-Back Kinetic Responses to Precision Placement Challenges and Cognitive Distractions During Repetitive Lifting
,”
Int. J. Ind. Ergon.
,
36
(
7
), pp.
637
650
.10.1016/j.ergon.2006.04.003
44.
NIOSH
,
1981
, “
Work Practices Guide for Manual Lifting
,” U.S. Department of Health and Human Services, National Institute for Occupational Safety and Health, Cincinnati, OH, NIOSH Technical Report No. 81–122.
45.
Mimura
,
M.
,
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Crisco
,
J. J.
,
Yamamoto
,
I.
, and
Vasavada
,
A.
,
1994
, “
Disc Degeneration Affects the Multidirectional Flexibility of the Lumbar Spine
,”
Spine
,
19
(
12
), pp.
1371
1380
.10.1097/00007632-199406000-00011
46.
Brown
,
M. D.
,
Holmes
,
D. C.
, and
Heiner
,
A. D.
,
2002
, “
Measurement of Cadaver Lumbar Spine Motion Segment Stiffness
,”
Spine
,
27
(
9
), pp.
918
922
.10.1097/00007632-200205010-00006
47.
Gertzbein
,
S. D.
,
Seligman
,
J.
,
Holtby
,
R.
,
Chan
,
K. H.
,
Kapasouri
,
A.
,
Tile
,
M.
, and
Cruickshank
,
B.
,
1985
, “
Centrode Patterns and Segmental Instability in Degenerative Disc Disease
,”
Spine
,
10
(
3
), pp.
257
261
.10.1097/00007632-198504000-00014
You do not currently have access to this content.