Abstract

We analyze temperature dynamics in anatomic pathology samples to identify the most efficient refrigeration method and to predict the time available for optimal sectioning before sample heating, thus getting appropriate information for a correct diagnosis by anatomopathologists. A thermal finite element (FE) analysis was carried out with comsolmultiphysics to evaluate temperature variations in paraffin-embedded tissues, i.e., muscle, bone and fat, and the corresponding thermal stresses. Experiments with different tissues and thermocouple-based measurements allowed validating the FE simulations. Simulations allowed to estimate the time needed to bring the sample at the optimal temperature for sectioning (−8 to −4 °C) in different conditions: refrigeration on a cold plate, refrigeration in a cooled environment, and refrigeration in an environment with forced convection. Among the three cooling methods tested, the forced convection at −20 °C and with an air-flow speed of 5 m/s resulted in the shortest cooling time. As compared to the other methods, thermal stresses can be modulated by varying the air-flow speed. For the different conditions, the time needed for the surface of the tissue block to exit from a temperature corresponding to an optimal cutting, when leaving the sample exposed to room temperature after refrigeration, ranged from 12 to 310 s. We quantify the time needed to adequately refrigerate paraffin-embedded tissue samples and the time available before they leave the optimal temperature window for sectioning. We also evaluate the maximum stress attained in the paraffin block during the cooling and the heating transients. This information will help optimize anatomic pathology processes.

References

1.
Australasian Association of Clinical Biochemists (AACB)
, 2015, “Anatomic Pathology,”
AACB
, Alexandria, NSW, accessed Apr. 7, 2021, https://www.labtestsonline.org.au/inside-the-lab/anatomical-pathology-in-detail
2.
Brittig
,
F.
,
Weinkauf
,
P.
, and
Kärchner
,
H.
,
2004
, “
Ideal Cooling Process for Paraffin-Embedded Tissues
,”
Pathol. Oncol. Res.
,
10
(
3
), pp.
172
173
.10.1007/BF03033748
3.
Helander
,
H. F.
,
1974
, “
Some Observations on Knife Properties and Sectioning Mechanics During Ultramicrotomy of Plastic Embedding Media
,”
J. Microsc.
,
101
(
1
), pp.
81
93
.10.1111/j.1365-2818.1974.tb03869.x
4.
Dean
,
H. L.
, and Mangum, L.,
1945
, “
Compression in Microtome Sections of Plant Tissues
,”
Proc. Iowa Acad. Sci.,
52
(
1
), pp.
107
112
.https://scholarworks.uni.edu/pias/vol52/iss1/14
5.
Fu
,
X.
,
Klepeis
,
V.
, and
Yagi
,
Y.
,
2018
, “
Evaluation of an Automated Tissue Sectioning Machine for
Digital Pathology,”
Diagn. Pathol.
,
4
(
1
), p.
2364
.10.17629/www.diagnosticpathology.eu-2018-4:267
6.
Brisach, D.
, Alms, J., Glancey, J., and Cloud, N.,
2009
, “Integrated Cut Performance and Sample Inspection System for Microtome Setup Evaluation,”
ASME
Paper No. DETC2009-87521.10.1115/DETC2009-87521
7.
Allison
,
R. T.
, and
Vincent
,
J. F.
,
1990
, “
Measuring the Forces Acting During Microtomy by the Use of Load Cells
,”
J. Microsc.
,
159
(
Pt. 2
), pp.
203
210
.10.1111/j.1365-2818.1990.tb04776.x
8.
Rolls, G. O., Davies, S., and Gallagher, A.,
2008
, “101 Steps to Better Histology—A Practical Guide to Good Histology Practice,” Leica Biosystems, Melbourne, Australia, Vol. 7.
9.
Dey
,
P.
,
2018
,
Basic and Advanced Laboratory Techniques in Histopathology and Cytology
,
Springer Nature Singapore Pte Ltd
., Singapore.
10.
Dempster
,
P. T.
,
1942
, “
The Mechanics of Paraffin Sectioning by the Microtome
,” Wiley Online Library, Hoboken, NJ.10.1002/ar.1090840303
11.
Onozato
,
M. L.
,
Hammond
,
S.
,
Merren
,
M.
, and
Yagi
,
Y.
,
2013
, “
Evaluation of a Completely Automated Tissue-Sectioning Machine for Paraffin Blocks
,”
J. Clin. Pathol.
,
66
(
2
), pp.
151
154
.10.1136/jclinpath-2011-200205
12.
Heidary
,
Z.
,
Mojra
,
A.
,
Shirazi
,
M.
, and
Bazargan
,
M.
,
2018
, “
A Novel Approach for Early Evaluation of Orthodontic Process by a Numerical Thermomechanical Analysis
,”
Int. J. Numer. Method Biomed. Eng.
,
34
(
1
), p.
e2899
.10.1002/cnm.2899
13.
Orlande
,
H. R. B.
,
Lutaif
,
N. A.
, and
Gontijo
,
J. A. R.
,
2019
, “
Estimation of the Kidney Metabolic Heat Generation Rate
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
9
), p.
e3224
.10.1002/cnm.3224
14.
Arnold M., 2013, Histochemie: einführung in grundlagen und Prinzipien der Methoden. Springer-Verlag, Berlin.
15.
Holder
,
G. A.
, and
Winkler
,
J.
,
1965
, “
Crystal-Growth Poisoning of n-Paraffin Wax by Polymeric Additives and Its Relevance to Polymer Crystallization Mechanisms
,”
Nature
,
207
(
4998
), pp.
719
721
.10.1038/207719a0
16.
Bergman
,
T. L.
,
Lavine
,
A.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2017
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
17.
Lazarou
,
P.
, and Rotinat, C., 2013, “Multiphysics Simulation of a Self-Heating Paraffin Membrane Microactuator,”
Proceedings of the COMSOL Conference in Rotterdam
, Rotterdam, The Netherlands, Oct. 23–25.https://www.comsol.com/paper/download/181915/lazarou_paper.pdf
18.
I. Foundation
,
2020
, “Virtual Population–Tissue Properties Database,”
Foundation for Research on Information Technologies in Society
, Zurich, Switzerland, accessed Jan. 7, 2020, https://itis.swiss/virtual-population/tissue-properties/database/
19.
Li
,
X.
,
Zhong
,
Y.
,
Jazar
,
R.
, and
Subic
,
A.
,
2014
, “
Thermal-Mechanical Deformation Modeling of Soft Tissues for Thermal Ablation
,”
Biomed. Mater. Eng.
,
24
(
6
), pp.
2299
2310
.10.3233/BME-141043
20.
Mann
,
A.
,
Bürgel
,
C. M.
, and
Groche
,
P.
,
2018
, “
A Modeling Strategy for Predicting the Properties of Paraffin Wax Actuators
,”
Actuators
,
7
(
4
), p.
81
.10.3390/act7040081
21.
Feldmann
,
A.
,
Feldmann
,
A.
,
Wili
,
P.
,
Maquer
,
G.
, and
Zysset
,
P.
,
2018
, “
The Thermal Conductivity of Cortical and Cancellous Bone
,”
Eur. Cells Mater.
,
35
(
2000
), pp.
25
33
.10.22203/eCM.v035a03
22.
Budday
,
S.
,
Ovaert
,
T. C.
,
Holzapfel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2020
, “Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue,”
Arch. Computat. Methods Eng.
,
27
, pp. 1187–1230.10.1007/s11831-019-09352-w
23.
Handorf
,
A. M.
,
Zhou
,
Y.
,
Halanski
,
M. A.
, and
Li
,
W. J.
,
2015
, “
Tissue Stiffness Dictates Development, Homeostasis, and Disease Progression
,”
Organogenesis
,
11
(
1
), pp.
1
15
.10.1080/15476278.2015.1019687
24.
DeSain, J., Brady, B., Metzler, K., Curtiss, T., and Albright, T.,
2009
, “Tensile Tests of Paraffin Wax for Hybrid Rocket Fuel Grains,”
AIAA
Paper No. 2009-5115.10.2514/6.2009-5115
25.
Islam
,
M. T.
,
Tang
,
S.
,
Liverani
,
C.
,
Saha
,
S.
,
Tasciotti
,
E.
, and
Righetti
,
R.
,
2020
, “
Non-Invasive Imaging of Young's Modulus and Poisson's Ratio in Cancers In Vivo
,”
Sci. Rep.
,
10
(
1
), pp.
1
12
.10.1038/s41598-020-64162-6
26.
Stańczyk
,
M.
, and
Telega
,
J. J.
,
2003
, “
Thermal Problems in Biomechanics—A Review—Part III: Cryosurgery, Cryopreservation
,”
Acta Bioeng. Biomech.
,
5
(
2
), pp.
3
22
. http://www.actabio.pwr.wroc.pl/Vol5No2/1.pdf
27.
Azinfar
,
B.
,
Zirrahi
,
M.
,
Hassanzadeh
,
H.
, and
Abedi
,
J.
,
2015
, “
A Method for Characterization of Bitumen
,”
Fuel
,
153
, pp.
240
248
.10.1016/j.fuel.2015.03.005
28.
Mann
,
A.
,
Germann
,
T.
,
Ruiter
,
M.
, and
Groche
,
P.
,
2020
, “
The Challenge of Upscaling Paraffin Wax Actuators
,”
Mater. Des
,
190
, p.
108580
.10.1016/j.matdes.2020.108580
29.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
30.
Cengel
,
Y. A.
, Klein, S., and Beckman, W.,
1998
,
A Heat Transfer A Practical Approach
,
McGraw-Hill, Boston, MA, Vol. 141, p.
26
.
31.
Haj-Sha
,
S.
,
Workman
,
B.
,
Trifkovic
,
M.
, and
Mehrotra
,
A. K.
,
2019
, “
In-Situ Monitoring of Paraffin Wax Crystal Formation and Growth
,”
Cryst. Growth Des.
,
19
(
5
), pp.
2830
2837
.10.1021/acs.cgd.9b00052
You do not currently have access to this content.