Abstract

This study aims to examine the relation between pull-out strength and preload values of the cortical screw used in bone fracture fixation. The research question is that “Does the pull-out strength of the cortical screw used in the bone fracture fixation change with the preload values of the screw change?”. To perform this purpose, the finite element method was selected due to its ease to evaluate and calculate the stresses on the whole model. Models of a cortical screw, partial plate, and bone were created using the SolidWorks program. The material properties of the bone were selected orthotropic material type. The bone fixed on the distal and proximal ends. The pull-out forces were applied at the bottom of the plate. The screw that has been loaded ranges from 100 N–700 N as preload. The pull-out forces were determined 200–400–600 N as in the literature. The results show that the pull-out strength of the screw was changed when the preloaded values higher than 400 N. However, it was seen that the pull-out strength does not substantially change when the preload values were lower than 400 N. When the preload values were applied ≥500 N, the maximum von Mises stresses on the screw exceeded the critical strength of the screw material. In conclusion, the critical preload value was determined as 500 N for the optimum pull-out strength.

References

1.
Sànchez-Riera
,
L.
,
Wilson
,
N.
,
Kamalaraj
,
N.
,
Nolla
,
J. M.
,
Kok
,
C.
,
Li
,
Y.
,
Macara
,
M.
,
Norman
,
R.
,
Chen
,
J. S.
,
Smith
,
E. U. R.
,
Sambrook
,
P. N.
,
Hernández
,
C. S.
,
Woolf
,
A.
, and
March
,
L.
,
2010
, “
Osteoporosis and Fragility Fractures
,”
Best Pract. Res. Clin. Rheumatol.
,
24
(
6
), pp.
793
810
.10.1016/j.berh.2010.10.003
2.
Gerdhem
,
P.
,
2013
, “
Osteoporosis and Fragility Fractures: Vertebral Fractures
,”
Best Pract. Res. Clin. Rheumatol.
,
27
(
6
), pp.
743
755
.10.1016/j.berh.2014.01.002
3.
Augat
,
P.
,
Simon
,
U.
,
Liedert
,
A.
, and
Claes
,
L.
,
2005
, “
Mechanics and Mechano-Biology of Fracture Dealing in Normal and Osteoporotic Bone
,”
Osteoporosis Int.
,
16
(
S02
), pp.
S36
S43
.10.1007/s00198-004-1728-9
4.
Bagheri
,
Z. S.
,
Tavakkoli Avval
,
P.
,
Bougherara
,
H.
,
Aziz
,
M. S. R.
,
Schemitsch
,
E. H.
, and
Zdero
,
R.
,
2014
, “
Biomechanical Analysis of a New Carbon Fiber/Flax/Epoxy Bone Fracture Plate Shows Less Stress Shielding Compared to a Standard Clinical Metal Plate
,”
ASME J. Biomech. Eng.
,
136
(
9
), p. 091002.
5.
Çelik
,
T.
,
2021
, “
Biomechanical Evaluation of the Screw Preload Values Used in the Plate Placement for Bone Fractures
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
235
(
2
), pp.
141
147
.10.1177/0954411920964628
6.
MacLeod
,
A. R.
,
Pankaj
,
P.
, and
Simpson
,
A. H. R. W.
,
2012
, “
Does Screw–Bone Interface Modelling Matter in Finite Element Analyses?
,”
J. Biomech.
,
45
(
9
), pp.
1712
1716
.10.1016/j.jbiomech.2012.04.008
7.
Fouda
,
N.
,
Mostafa
,
R.
, and
Saker
,
A.
,
2019
, “
Numerical Study of Stress Shielding Reduction at Fractured Bone Using Metallic and Composite Bone-Plate Models
,”
Ain Shams Eng. J.
,
10
(
3
), pp.
481
488
.10.1016/j.asej.2018.12.005
8.
Gaston
,
M. S.
, and
Simpson
,
A. H. R. W.
,
2007
, “
Inhibition of Fracture Healing
,”
J. Bone Jt. Surg. Brit. Vol.
,
89-B
(
12
), pp.
1553
1560
.10.1302/0301-620X.89B12.19671
9.
Hansson
,
S.
, and
Werke
,
M.
,
2003
, “
The Implant Thread as a Retention Element in Cortical Bone: The Effect of Thread Size and Thread Profile: A Finite Element Study
,”
J. Biomech.
,
36
(
9
), pp.
1247
1258
.10.1016/S0021-9290(03)00164-7
10.
Huiskes
,
R.
,
1993
, “
Stress Shielding and Bone Resorption in THA: Clinical Versus Computer-Simulation Studies
,”
Acta Orthop. Belg.
,
59
(
Suppl 1
), pp.
118
129
.
11.
Rikli
,
D.
,
Goldhahn
,
J.
,
Käch
,
K.
,
Voigt
,
C.
,
Platz
,
A.
, and
Hanson
,
B.
,
2015
, “
Erratum to: The Effect of Local Bone Mineral Density on the Rate of Mechanical Failure After Surgical Treatment of Distal Radius Fractures: A Prospective Multicentre Cohort Study Including 249 Patients
,”
Arch. Orthop. Trauma Surg.
,
135
(
7
), pp.
1043
1043
.10.1007/s00402-015-2211-0
12.
Atik
,
O. S.
,
2015
, “
Has the Awareness of Orthopedic Surgeons on Osteoporosis Been Increased in the Past Decade?
,”
Eklem Hastalik Cerrahisi
,
26
(
2
), pp.
63
63
.10.5606/ehc.2015.15
13.
Boudard
,
G.
,
Pomares
,
G.
,
Milin
,
L.
,
Lemonnier
,
I.
,
Coudane
,
H.
,
Mainard
,
D.
, and
Delagoutte
,
J. P.
,
2014
, “
Locking Plate Fixation Versus Antegrade Nailing of 3- and 4-Part Proximal Humerus Fractures in Patients Without Osteoporosis. Comparative Retrospective Study of 63 Cases
,”
Orthop. Traumatol. Surg. Res.
,
100
(
8
), pp.
917
924
.10.1016/j.otsr.2014.09.021
14.
MacLeod
,
A. R.
,
Simpson
,
A. H. R. W.
, and
Pankaj
,
P.
,
2015
, “
Reasons Why Dynamic Compression Plates Are Inferior to Locking Plates in Osteoporotic Bone: A Finite Element Explanation
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
16
), pp.
1818
1825
.10.1080/10255842.2014.974580
15.
Feng
,
X.
,
Lin
,
G.
,
Fang
,
C. X.
,
Lu
,
W. W.
,
Chen
,
B.
, and
Leung
,
F. K. L.
,
2019
, “
Bone Resorption Triggered by High Radial Stress: The Mechanism of Screw Loosening in Plate Fixation of Long Bone Fractures
,”
J. Orthop. Res.
,
37
(
7
), pp.
1498
1507
.10.1002/jor.24286
16.
Zhang
,
Q. H.
,
Tan
,
S. H.
, and
Chou
,
S. M.
,
2006
, “
Effects of Bone Materials on the Screw Pull-Out Strength in Human Spine
,”
Med. Eng. Phys.
,
28
(
8
), pp.
795
801
.10.1016/j.medengphy.2005.11.009
17.
An
,
B.
,
Liu
,
Y.
,
Arola
,
D.
, and
Zhang
,
D.
,
2011
, “
Fracture Toughening Mechanism of Cortical Bone: An Experimental and Numerical Approach
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
983
992
.10.1016/j.jmbbm.2011.02.012
18.
Karakaşlı
,
A.
,
2016
, “
Biomechanical Comparison of Pullout Strengths of Five Cortical Screw Types: An Innovative Measurement Method
,”
Jt. Diseases Relat. Surg.
,
27
(
3
), pp.
138
145
.10.5606/ehc.2016.29
19.
İnceoğlu
,
S.
,
Ehlert
,
M.
,
Akbay
,
A.
, and
McLain
,
R. F.
,
2006
, “
Axial Cyclic Behavior of the Bone–Screw Interface
,”
Med. Eng. Phys.
,
28
(
9
), pp.
888
893
.10.1016/j.medengphy.2005.12.009
20.
Feng
,
X.
,
Qi
,
W.
,
Wang
,
C.
,
Leung
,
F.
, and
Chen
,
B.
,
2019
, “
Effect of the Screw Tightening Sequence on the Stress Distribution of a Dynamic Compression Plate: A Pilot Finite Element Study
,”
J. Orthop. Surg.
,
27
(
3
), pp.
1
8
.
21.
Krone
,
R.
, and
Schuster
,
P.
,
2006
, “
An Investigation on the Importance of Material Anisotropy in Finite-Element Modeling of the Human Femur
,”
SAE Paper No.
2006-06-0064.
22.
Hart
,
N. H.
,
Nimphius
,
S.
,
Rantalainen
,
T.
,
Ireland
,
A.
,
Siafarikas
,
A.
, and
Newton
,
R. U.
,
2017
, “
Mechanical Basis of Bone Strength: Influence of Bone Material, Bone Structure and Muscle Action
,”
J. Musculoskelet. Neuronal. Interact.
,
17
(
3
), pp.
114
139
.
23.
Beltran
,
M. J.
,
Collinge
,
C. A.
, and
Gardner
,
M. J.
,
2016
, “
Stress Modulation of Fracture Fixation Implants
,”
J. Am. Acad. Orthop. Surg.
,
24
(
10
), pp.
711
719
.10.5435/JAAOS-D-15-00175
24.
Agarwal
,
R.
,
Jain
,
V.
,
Gupta
,
V.
,
Saxena
,
S.
, and
Dwibedi
,
V.
,
2020
, “
Effect of Surface Topography on Pull-Out Strength of Vortical Crew After Ultrasonic Bone Drilling: An In Vitro Study
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
363
), pp.
1
13
.
25.
Mejia
,
A.
,
Solitro
,
G.
,
Gonzalez
,
E.
,
Parekh
,
A.
,
Gonzalez
,
M.
, and
Amirouche
,
F.
,
2020
, “
Pullout Strength After Multiple Reinsertions in Radial Bone Fixation
,”
Hand
,
15
(
3
), pp.
393
398
.10.1177/1558944718795510
26.
Morgan
,
E. F.
,
Unnikrisnan
,
G. U.
, and
Hussein
,
A. I.
,
2018
, “
Bone Mechanical Properties in Healthy and Diseased States
,”
Annu. Rev. Biomed. Eng.
,
20
(
1
), pp.
119
143
.10.1146/annurev-bioeng-062117-121139
27.
ÇElİK
,
T.
, and
KİŞİOĞLu
,
Y.
,
2021
, “
New Hip Prosthesis Design and Evaluation With Using Finite Element Analysis
,”
J. Polytech.
, 24(4), pp.
1
7
.
28.
Çelik
,
T.
, and
Kişioğlu
,
Y.
,
2019
, “
Evaluation of New Hip Prosthesis Design With Finite Element Analysis
,”
Aust. Phys. Eng. Sci. Med.
,
42
(
4
), pp.
1033
1038
.10.1007/s13246-019-00802-0
29.
Xie
,
S.
,
Manda
,
K.
, and
Pankaj
,
P.
,
2018
, “
Time-Dependent Behaviour of Bone Accentuates Loosening in the Fixation of Fractures Using Bone-Screw Systems
,”
Bone Jt. Res.
,
7
(
10
), pp.
580
586
.10.1302/2046-3758.710.BJR-2018-0085.R1
30.
Sharma
,
N. K.
,
Sharma
,
S.
,
Rathi
,
A.
,
Kumar
,
A.
,
Saini
,
K. V.
,
Sarker
,
M. D.
,
Naghieh
,
S.
,
Ning
,
L.
, and
Chen
,
X.
,
2020
, “
Micromechanisms of Cortical Bone Failure Under Different Loading Conditions
,”
ASME J. Biomech. Eng.
,
142
(
9
), p.
094501
.
You do not currently have access to this content.