Abstract

Medical thermography has been around for several decades however due to its low specificity it has not become a popular medical diagnostic technique. The development of computational models of heat transfer in biological tissue can provide a deeper knowledge of healthy and nonhealthy thermal patterns which could increase the specificity of this technique increasing its usefulness in clinical diagnosis. In this work, the thermal pattern of cancerous tumors and cysts are calculated through finite element computer simulations using a real human female torso. The simulation results show a thermal pattern that agrees with infrared thermal images taken from female subjects, the simulated thermal patterns show real thermal features that do not appear in simulations performed using other approximate geometries of the breast. Results show that the temperature on the region of the skin closest to the tumor decreases for cysts while it increases for malignant tumors. The temperature patterns show a 20% deviation from thermal simulations using a hemispherical model of the breast, these results reinforce the notion that the geometry used for thermal simulation plays an important role in the accuracy of the simulations. These results are a first step in understanding benign and malignant thermal processes of the breast which might help increase the usefulness of infrared imaging in breast clinical diagnosis.

References

1.
González
,
F. J.
,
2007
, “
Thermal Simulation of Breast Tumors
,”
Rev. Mexicana Física
,
53
(
4
), pp.
323
326
.https://rmf.smf.mx/ojs/rmf/article/view/3552/3519
2.
Jiang
,
L. J.
,
Ng
,
E. Y. K.
,
Yeo
,
A. C. B.
,
Wu
,
S.
,
Pan
,
F.
,
Yau
,
W. Y.
,
Chen
,
J. H.
, and
Yang
,
Y.
,
2005
, “
A Perspective on Medical Infrared Imaging
,”
J. Med. Eng. Technol.
,
29
(
6
), pp.
257
267
.10.1080/03091900512331333158
3.
Clark
,
R. P.
, and
Goff
,
M. R.
,
1990
, “
Medical Thermography—Current Status
,” Proc. SPIE 1320, Infrared Technology and Applications.10.1117/12.22328
4.
González
,
F. J.
,
2017
, “
Theoretical and Clinical Aspects of the Use of Thermography in Non-Invasive Medical Diagnosis
,”
Biomed. Spectrosc. Imaging
,
5
(
4
), pp.
347
358
.10.3233/BSI-160152
5.
US Food and Drug Administration
,
2019
, “
FDA Warns Thermography should not be Used in Place of Mammography to Detect, Diagnose, or Screen for Breast Cancer, FDA Safety Communication
,” U.S. Food and Drug Administration, Silver Spring, MD, accessed Aug. 10, 2020, https://www.fda.gov/medical-devices/safety-communications/fda-warns-thermography-should-not-be-used-place-mammography-detect-diagnose-or-screen-breast-cancer
6.
Pennes
,
H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
133
.10.1152/jappl.1948.1.2.93
7.
Gonzalez-Hernandez
,
J.-L.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2018
, “
Generation and Thermal Simulation of a Digital Model of the Female Breast in Prone Position
,”
ASME J. Med. Diagnost.
,
1
(
4
), p.
041006
.10.1115/1.4041421
8.
Das
,
K.
, and
Mishra
,
S. C.
,
2013
, “
Estimation of Tumor Characteristics in a Breast Tissue With Known Skin Surface Temperature
,”
J. Therm. Biol.
,
38
(
6
), pp.
311
317
.10.1016/j.jtherbio.2013.04.001
9.
Osman
,
M. M.
, and
Afify
,
E. M.
,
1984
, “
Thermal Modeling of the Normal Woman's Breast
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
123
130
.10.1115/1.3138468
10.
Osman
,
M. M.
, and
Afify
,
E. M.
,
1988
, “
Thermal Modeling of the Malignant Woman's Breast
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
269
276
.10.1115/1.3108441
11.
Jiang
,
L.
,
Zhan
,
W.
, and
Loew
,
M.
,
2008
, “
Combined Thermal and Elastic Modeling of the Normal and Tumorous Breast
,”
SPIE
Paper No. 69161E.10.1117/12.772451
12.
Ng
,
E. Y. K.
, and
Kee
,
E. C.
,
2008
, “
Advanced Integrated Technique in Breast Cancer Thermography
,”
J. Med. Eng. Technol.
,
32
(
2
), pp.
103
114
.10.1080/03091900600562040
13.
Kandlikar
,
S. G.
,
Perez-Raya
,
I.
,
Raghupathi
,
P. A.
,
Gonzalez-Hernandez
,
J.-L.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2017
, “
Infrared Imaging Technology for Breast Cancer Detection – Current Status, Protocols and New Directions
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
2303
2320
.10.1016/j.ijheatmasstransfer.2017.01.086
14.
Farimani
,
F. S.
,
2016
, “
Breast
,” GrabCAD, Cambridge, MA, accessed Apr. 2, 2019, https://grabcad.com/library/breast-1
15.
MakeHuman
,
2019
, “
Make Human Community
,” Make Human Community, Enschede, Overijssel, The Netherlands, accessed Apr. 2, 2019, http://www.makehumancommunity.org/
16.
Gambin
,
B.
,
Byra
,
M.
,
Kruglenko
,
E.
,
Doubrovina
,
O.
, and
Nowicki
,
A.
,
2016
, “
Ultrasonic Measurement of Temperature Rise in Breast Cyst and in Neighbouring Tissues as a Method of Tissue Differentiation
,”
Arch. Acoust.
,
41
(
4
), pp.
791
798
.10.1515/aoa-2016-0076
17.
González
,
F. J.
,
2011
, “
Non-Invasive Estimation of the Metabolic Heat Production of Breast Tumors Using Digital Infrared Imaging
,”
QIRT J.
,
8
(
2
), pp.
139
148
.10.3166/qirt.8.139-148
18.
Neal
,
C. H.
,
Flynt
,
K. A.
,
Jeffries
,
D. O.
, and
Helvie
,
M. A.
,
2018
, “
Breast Imaging Outcomes Following Abnormal Thermography
,”
Acad. Radiol.
,
25
(
3
), pp.
273
278
.10.1016/j.acra.2017.10.015
19.
Gautherie
,
M.
,
1980
, “
Thermopathology of Breast Cancer: Measurement and Analysis of In Vivo Temperature and Blood Flow
,”
Ann. New York Acad. Sci.
,
335
(
1 Thermal Chara
), pp.
383
415
.10.1111/j.1749-6632.1980.tb50764.x
You do not currently have access to this content.