Abstract

Comprehensive knowledge of strain rate-dependent viscoelastic properties of bony materials is necessary to understand the mechanisms of bone fracture under impact loading conditions (e.g., falls, traffic accidents, and military environments). Although the mechanical properties of bones have been studied for several decades, the high strain rate data and corresponding material parameters of the rate-dependent constitutive models are still limited. In this study, split Hopkinson pressure bar technique was used to test bovine cortical bones, to obtain the rate-dependent stress–strain curves in two directions (along and perpendicular to the bone fibers). A constitutive relationship comprising two terms was then applied to identify the material constants with strain rate effect and viscoelastic properties. In this model, the linear elasticity was combined with nonlinear viscoelasticity components to describe the overall nonlinear strain rate dependence. The presented data give strong experimental evidence and basis for further development of numerical biomechanical models to simulate human cortical bone fracture.

References

1.
Lewis
,
J.
, and
Goldsmith
,
W.
,
1975
, “
The Dynamic Fracture and Prefracture Response of Compact Bone by Split Hopkinson Bar Methods
,”
J. Biomech.
,
8
(
1
), pp.
27
40
.10.1016/0021-9290(75)90040-8
2.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1976
, “
Bone Compressive Strength: The Influence of Density and Strain Rate
,”
Sci.
,
194
(
4270
), pp.
1174
1176
.10.1126/science.996549
3.
Evans
,
F. G.
, and
Vincentelli
,
R.
,
1974
, “
Relations of the Compressive Properties of Human Cortical Bone to Histological Structure and Calcification
,”
J. Biomech.
,
7
(
1
), pp.
1
10
.10.1016/0021-9290(74)90064-5
4.
Hansen
,
U.
,
Zioupos
,
P.
,
Simpson
,
R.
,
Currey
,
J. D.
, and
Hynd
,
D.
,
2008
, “
The Effect of Strain Rate on the Mechanical Properties of Human Cortical Bone
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011011
.10.1115/1.2838032
5.
Li
,
F.
,
Li
,
J.
,
Kou
,
H.
,
Huang
,
T.
, and
Zhou
,
L.
,
2015
, “
Compressive Mechanical Compatibility of Anisotropic Porous Ti6Al4V Alloys in the Range of Physiological Strain Rate for Cortical Bone Implant Applications
,”
J. Mater. Sci. Mater. Med.
,
26
(
9
), p.
233
.10.1007/s10856-015-5565-5
6.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
(
5
), pp.
405
410
.10.1016/8756-3282(96)00028-2
7.
Asgharpour, Z., Zioupos, P., Graw, M., and Peldschus, S., 2014, “Development of a Strain Rate Dependent Material Model of Human Cortical Bone for Computer-Aided Reconstruction of Injury Mechanisms,”
Forensic Sci. Int.
, 236, pp. 109–116. 10.1016/j.forsciint.2013.11.010
8.
Bailey, A. N., Christopher, J. J., Salzar, R. S., and Brozoski, F.,
2015
, “
Comparison of Hybrid-III and Postmortem Human Surrogate Response to Simulated Underbody Blast Loading
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051009
.10.1115/1.4029981
9.
Peter
,
Z.
,
Ulrich
,
H.
, and
Currey
,
J. D.
,
2008
, “
Microcracking Damage and the Fracture Process in Relation to Strain Rate in Human Cortical Bone Tensile Failure
,”
J. Biomech.
,
41
(
14
), pp.
2932
2939
.10.1016/j.jbiomech.2008.07.025
10.
Teja
,
C. K.
,
Chawla
,
A.
, and
Mukherjee
,
S.
,
2013
, “
Determining the Strain Rate Dependence of Cortical and Cancellous Bones of Human Tibia Using a Split Hopkinson Pressure Bar
,”
Int. J. Crashworthiness
,
18
(
1
), pp.
11
18
.10.1080/13588265.2012.730212
11.
Ferreira
,
F.
,
Vaz
,
M.
, and
Simoes
,
J.
,
2006
, “
Mechanical Properties of Bovine Cortical Bone at High Strain Rate
,”
Mater. Charact.
,
57
(
2
), pp.
71
79
.10.1016/j.matchar.2005.11.023
12.
Lee
,
O. S.
, and
Park
,
J. S.
,
2011
, “
Dynamic Deformation Behavior of Bovine Femur Using SHPB
,”
J. Mech. Sci. Technol.
,
25
(
9
), pp.
2211
2215
.10.1007/s12206-011-0602-x
13.
McElhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(
4
), pp.
1231
1236
.10.1152/jappl.1966.21.4.1231
14.
Zhu, F., Saif, T., Presley, B., and Yang, K.,
2017
, “
The Mechanical Behaviour of Biological Tissues at High Strain Rates
,”
Military Injury Biomechanics
,
CRC Press
, Boca Raton, FL, pp.
103
118
.10.1201/9781315151731-8
15.
Chen
,
W.
, and
Song
,
B.
,
2011
,
Split Hopkinson (Kolsky) Bar: Design, Testing and Applications
, Springer, Berlin.
16.
Shim
,
V. P. W.
,
Yang
,
L. M.
,
Liu
,
J. F.
, and
Lee
,
V. S.
,
2005
, “
Characterisation of the Dynamic Compressive Mechanical Properties of Cancellous Bone From the Human Cervical Spine
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
525
540
.10.1016/j.ijimpeng.2005.03.006
17.
Cloete, T. J., Bekker, A., Kok, S., and Nurick, G. N.,
2009
, “
A Tapered Striker Pulse Shaping Technique for Uniform Strain Rate Dynamic Compression of Bovine Bone
,”
Dymat 2009: Ninth International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading
, Vol.
1
, Brussels, Belgium, Sept. 7–11, pp.
901
907
.10.1051/dymat/2009126
18.
Westhuizen, A. V. D., Cloete, T. J., Kok, S., and Nurick, G. N.
,
2007
, “
Rate Dependent Mechanical Properties of Bovine Bone in Axial Compression
,”
IRCOBI Conference
, Maastricht, The Netherlands, Sept. 19–21, pp.
377
380
.https://www.semanticscholar.org/paper/Strain-rate-dependent-mechanical-properties-of-bone-Westhuizen-Cloete/00a5c84768225b9639a62aab36f58a5e86d55064
19.
Adharapurapu
,
R. R.
,
Jiang
,
F.
, and
Vecchio
,
K. S.
,
2006
, “
Dynamic Fracture of Bovine Bone
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1325
1332
.10.1016/j.msec.2005.08.008
20.
Tennyson
,
R.
,
Ewert
,
R.
, and
Niranjan
,
V.
,
1972
, “
Dynamic Viscoelastic Response of Bone
,”
Exp. Mech.
,
12
(
11
), pp.
502
507
.10.1007/BF02320746
21.
Crowninshield
,
R.
, and
Pope
,
M.
,
1974
, “
The Response of Compact Bone in Tension at Various Strain Rates
,”
Ann. Biomed. Eng.
,
2
(
2
), pp.
217
225
.10.1007/BF02368492
22.
Kirchner
,
H.
,
2006
, “
Ductility and Brittleness of Bone
,”
Int. J. Fract.
,
139
(
3–4
), pp.
509
516
.10.1007/s10704-006-0050-2
23.
Guillemot, H., Besnault, B., Robin, S., Got, C., Le Coz, J. Y., Lavaste, F., and Lassau, J-P.
,
1997
, “
Pelvic Injuries in Side Impact Collisions: A Field Accident Analysis and Dynamic Tests on Isolated Pelvic Bones
,”
Stapp Car Crash Conference
, Orlando, FL, Nov. 13–14, pp.
91
100
.
24.
Lei
,
J.
,
Zhu
,
F.
,
Jiang
,
B.
, and
Wang
,
Z.
,
2018
, “
Underbody Blast Effect on the Pelvis and Lumbar Spine: A Computational Study
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
9
19
.10.1016/j.jmbbm.2017.12.004
25.
Stitzel
,
C.
,
2015
, “
Pelvic Response of a Total Human Body Finite Element Model During Simulated Under Body Blast Impacts
,”
IRCOBI Conference
, Lyon, France, Sept. 9–11, pp.
731
741
.http://www.ircobi.org/wordpress/downloads/irc15/pdf_files/82.pdf
26.
Song, E., Fontaine, L., Trosseille, X., and Guillemot, H.,
2005
,
Pelvis Bone Fracture Modeling in Lateral Impact
,
National Highway Traffic Safety Administration
, Washington, DC.http://www-nrd.nhtsa.dot.gov/pdf/nrd-01/esv/esv19/05-0247-O.pdf
You do not currently have access to this content.