An analytical theory for the unconfined creep behavior of a cylindrical inclusion (simulating a soft tissue tumor) embedded in a cylindrical background sample (simulating normal tissue) is presented and analyzed in this paper. Both the inclusion and the background are considered as fluid-filled, porous materials, each of them being characterized by a set of mechanical properties. Specifically, in this paper, the inclusion is considered to be less permeable than the background. The cylindrical sample is compressed using a constant pressure within two frictionless plates and is allowed to expand in an unconfined way along the radial direction. Analytical expressions for the effective Poisson's ratio (EPR) and fluid pressure inside and outside the inclusion are derived and analyzed. The theoretical results are validated using finite element models (FEMs). Statistical analysis shows excellent agreement between the results obtained from the developed model and the results from FEM. Thus, the developed theoretical model can be used in medical imaging modalities such as ultrasound poroelastography to extract the mechanical parameters of tissues and/or to better understand the impact of different mechanical parameters on the estimated displacements, strains, stresses, and fluid pressure inside a tumor and in the surrounding tissue.

References

1.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
2.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
(
4
), pp.
1482
1498
.
3.
Cheng
,
A. H.-D.
,
2016
,
Poroelasticity
, Vol.
27
,
Springer
,
Berlin, Germany
.
4.
Mow
,
V. C.
, and
Lai
,
W. M.
,
1980
, “
Recent Developments in Synovial Joint Biomechanics
,”
SIAM Rev.
,
22
(
3
), pp.
275
317
.
5.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Woo
,
S. L.
,
2012
,
Biomechanics of Diarthrodial Joints
, Vol.
1
,
Springer Science & Business Media
,
Berlin, Germany
.
6.
Mow
,
V. C.
,
Kuei
,
S.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
7.
Mow
,
V. C.
,
Bachrach
,
N. M.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
1994
, “
Stress, Strain, Pressure and Flow Fields in Articular Cartilage and Chondrocytes
,” In:
Mow
,
V. C.
,
Tran-Son-Tay
,
R.
,
Guilak
,
F.
, and
Hochmuth
,
R. M.
, eds.,
Cell Mechanics and Cellular Engineering
, Springer, New York.
8.
Ehlers
,
W.
, and
Markert
,
B.
,
2001
, “
A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
418
424
.
9.
Suh
,
J.
, and
DiSilvestro
,
M.
,
1999
, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
,
66
(
2
), pp.
528
535
.
10.
Cowin
,
S. C.
, and
Doty
,
S. B.
,
2007
,
Tissue Mechanics
,
Springer Science & Business Media
,
New York
.
11.
Pflaster
,
D.
,
Yuan
,
Y.
, and
Krag
,
I.
,
1996
, “
A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures
,”
ASME J. Biomech. Eng.
,
118
(
1
) pp.
1
9
.
12.
Armstrong
,
C.
,
Lai
,
W.
, and
Mow
,
V.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
13.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
(
1226
), pp.
376
396
.
14.
Rice
,
J.
,
Rudnicki
,
J.
, and
Simons
,
D. A.
,
1978
, “
Deformation of Spherical Cavities and Inclusions in Fluid-Infiltrated Elastic Materials
,”
Int. J. Solids Struct.
,
14
(
4
), pp.
289
303
.
15.
Song
,
Y.
,
Hu
,
H.
, and
Rudnicki
,
J. W.
,
2016
, “
Shear Properties of Heterogeneous Fluid-Filled Porous Media With Spherical Inclusions
,”
Int. J. Solids Struct.
,
83
, pp.
154
168
.
16.
Song
,
Y.
,
Hu
,
H.
,
Rudnicki
,
J. W.
, and
Duan
,
Y.
,
2016
, “
Dynamic Transverse Shear Modulus for a Heterogeneous Fluid-Filled Porous Solid Containing Cylindrical Inclusions
,”
Geophys. J. Int.
,
206
(
3
), pp.
1677
1694
.
17.
Sarntinoranont
,
M.
,
Rooney
,
F.
, and
Ferrari
,
M.
,
2003
, “
Interstitial Stress and Fluid Pressure Within a Growing Tumor
,”
Ann. Biomed. Eng.
,
31
(
3
), pp.
327
335
.
18.
Swabb
,
E. A.
,
Wei
,
J.
, and
Gullino
,
P. M.
,
1974
, “
Diffusion and Convection in Normal and Neoplastic Tissues
,”
Cancer Res.
,
34
(
10
), pp.
2814
2822
.http://cancerres.aacrjournals.org/content/34/10/2814.short
19.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
,
1995
, “
Time-Dependent Behavior of Interstitial Fluid Pressure in Solid Tumors: Implications for Drug Delivery
,”
Cancer Res.
,
55
(
22
), pp.
5451
5458
.http://cancerres.aacrjournals.org/content/55/22/5451
20.
Swartz
,
M. A.
,
Kaipainen
,
A.
,
Netti
,
P. A.
,
Brekken
,
C.
,
Boucher
,
Y.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
,
1999
, “
Mechanics of Interstitial-Lymphatic Fluid Transport: Theoretical Foundation and Experimental Validation
,”
J. Biomech.
,
32
(
12
), pp.
1297
1307
.
21.
Netti
,
P. A.
,
Berk
,
D. A.
,
Swartz
,
M. A.
,
Grodzinsky
,
A. J.
, and
Jain
,
R. K.
,
2000
, “
Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors
,”
Cancer Res.
,
60
(
9
), pp.
2497
2503
.http://cancerres.aacrjournals.org/content/60/9/2497.short
22.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1989
, “
Transport of Fluid and Macromolecules in Tumors—I: Role of Interstitial Pressure and Convection
,”
Microvasc. Res.
,
37
(
1
), pp.
77
104
.
23.
Jain
,
R. K.
,
Martin
,
J. D.
, and
Stylianopoulos
,
T.
,
2014
, “
The Role of Mechanical Forces in Tumor Growth and Therapy
,”
Annu. Rev. Biomed. Eng.
,
16
, p.
321
.
24.
Jain
,
R. K.
,
Tong
,
R. T.
, and
Munn
,
L. L.
,
2007
, “
Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights From a Mathematical Model
,”
Cancer Res.
,
67
(
6
), pp.
2729
2735
.
25.
Jain
,
R. K.
,
1998
, “
Delivery of Molecular and Cellular Medicine to Solid Tumors
,”
J. Controlled Release
,
53
(
1–3
), pp.
49
67
.
26.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
,
1997
, “
Macro-and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors
,”
AIChE J.
,
43
(
3
), pp.
818
834
.
27.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1991
, “
Transport of Fluid and Macromolecules in Tumors. iv. a Microscopic Model of the Perivascular Distribution
,”
Microvasc. Res.
,
41
(
2
), pp.
252
272
.
28.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1991
, “
Transport of Fluid and Macromolecules in Tumors—III: Role of Binding and Metabolism
,”
Microvasc. Res.
,
41
(
1
), pp.
5
23
.
29.
Baxter
,
L. T.
, and
Jain
,
R. K.
,
1990
, “
Transport of Fluid and Macromolecules in Tumors. ii. role of Heterogeneous Perfusion and Lymphatics
,”
Microvasc. Res.
,
40
(
2
), pp.
246
263
.
30.
Jain
,
R. K.
, and
Baxter
,
L. T.
,
1988
, “
Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure
,”
Cancer Res.
,
48
(
24 Part 1
), pp.
7022
7032
.http://cancerres.aacrjournals.org/content/48/24_Part_1/7022
31.
Milosevic
,
M. F.
,
Fyles
,
A. W.
, and
Hill
,
R. P.
,
1999
, “
The Relationship Between Elevated Interstitial Fluid Pressure and Blood Flow in Tumors: A Bioengineering Analysis
,”
Int. J. Radiat. Oncology* Biol.* Phys.
,
43
(
5
), pp.
1111
1123
.
32.
Netti
,
P.
,
Baxter
,
L.
,
Coucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R.
,
1995
, “
A Poroelastic Model for Interstitial Pressure in Tumors
,”
Biorheology
,
32
(
2–3
), pp.
346
346
.
33.
Stylianopoulos
,
T.
,
Martin
,
J. D.
,
Snuderl
,
M.
,
Mpekris
,
F.
,
Jain
,
S. R.
, and
Jain
,
R. K.
,
2013
, “
Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors During Progression: Implications for Vascular Collapse
,”
Cancer Res.
,
73
(
13
), pp.
3833
3841
.
34.
Leiderman
,
R.
,
Barbone
,
P. E.
,
Oberai
,
A. A.
, and
Bamber
,
J. C.
,
2006
, “
Coupling Between Elastic Strain and Interstitial Fluid Flow: Ramifications for Poroelastic Imaging
,”
Phys. Med. Biol.
,
51
(
24
), p.
6291
.
35.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
,
1991
, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
,
13
(
2
), pp.
111
134
.
36.
Ophir
,
J.
,
Alam
,
S.
,
Garra
,
B.
,
Kallel
,
F.
,
Konofagou
,
E.
,
Krouskop
,
T.
, and
Varghese
,
T.
,
1999
, “
Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
213
(
3
), pp.
203
233
.
37.
Righetti
,
R.
,
Garra
,
B. S.
,
Mobbs
,
L. M.
,
Kraemer-Chant
,
C. M.
,
Ophir
,
J.
, and
Krouskop
,
T. A.
,
2007
, “
The Feasibility of Using Poroelastographic Techniques for Distinguishing Between Normal and Lymphedematous Tissues In Vivo
,”
Phys. Med. Biol.
,
52
(
21
), p.
6525
.
38.
Righetti
,
R.
,
Ophir
,
J.
,
Srinivasan
,
S.
, and
Krouskop
,
T. A.
,
2004
, “
The Feasibility of Using Elastography for Imaging the Poisson's Ratio in Porous Media
,”
Ultrasound Med. Biol.
,
30
(
2
), pp.
215
228
.
39.
Lakes
,
R. S.
,
1998
,
Viscoelastic Solids
, Vol.
9
,
CRC Press
,
Boca Raton, FL
.
40.
Fung
,
Y.-C.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
New York
.
41.
Duck
,
F. A.
,
2013
,
Physical Properties of Tissues: A Comprehensive Reference Book
,
Academic Press
,
San Diego, CA
.
42.
Wellman
,
P.
,
Howe
,
R. D.
,
Dalton
,
E.
, and
Kern
,
K. A.
,
1999
,
Breast Tissue Stiffness in Compression Is Correlated to Histological Diagnosis
,
Harvard Bio Robotics Laboratory
,
Cambridge, MA
.
43.
Wellman
,
P. S.
,
Dalton
,
E. P.
,
Krag
,
D.
,
Kern
,
K. A.
, and
Howe
,
R. D.
,
2001
, “
Tactile Imaging of Breast Masses: First Clinical Report
,”
Arch. Surg.
,
136
(
2
), pp.
204
208
.
44.
Plewes
,
D. B.
,
Bishop
,
J.
,
Samani
,
A.
, and
Sciarretta
,
J.
,
2000
, “
Visualization and Quantification of Breast Cancer Biomechanical Properties With Magnetic Resonance Elastography
,”
Phys. Med. Biol.
,
45
(
6
), p.
1591
.
45.
Islam
,
M. T.
,
Chaudhry
,
A.
,
Unnikrishnan
,
G.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2018
, “
An Analytical Poroelastic Model for Ultrasound Elastography Imaging of Tumors
,”
Phys. Med. Biol.
,
63
(
2
), p.
025031
.
46.
Islam
,
M. T.
,
Chaudhry
,
A.
,
Unnikrishnan
,
G.
,
Reddy
,
J.
, and
Righetti
,
R.
,
2018
, “
An Analytical Model of Tumors With Higher Permeability Than Surrounding Tissues for Ultrasound Elastography Imaging
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
3
), p.
031006
.
47.
Swartz
,
M. A.
, and
Fleury
,
M. E.
,
2007
, “
Interstitial Flow and Its Effects in Soft Tissues
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
229
256
.
48.
Berry
,
G. P.
,
Bamber
,
J. C.
,
Armstrong
,
C. G.
,
Miller
,
N. R.
, and
Barbone
,
P. E.
,
2006
, “
Towards an Acoustic Model-Based Poroelastic Imaging Method—I: Theoretical Foundation
,”
Ultrasound Med. Biol.
,
32
(
12
), pp.
547
567
.
49.
Ateshian
,
G. A.
,
Costa
,
K. D.
, and
Hung
,
C. T.
,
2007
, “
A Theoretical Analysis of Water Transport Through Chondrocytes
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
91
101
.
50.
Islam
,
M.
,
Reddy
,
T.
,
Righetti
,
J.
, and
Raffaella
,
A.
,
2018
, “
An Analytical Poroelastic Model of a Non-Homogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications—Part II
,”
ASME J. Biomech. Eng.
, (Accepted manuscript).
51.
Verruijt
,
A.
,
2013
, “
Theory and Problems of Poroelasticity
,” Delft University of Technology, Delft, The Netherlands.
52.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
53.
Segall
,
A.
,
2001
, “
Thermoelastic Analysis of Thick-Walled Vessels Subjected to Transient Thermal Loading
,”
ASME J. Pressure Vessel Technol.
,
123
(
1
), pp.
146
149
.
54.
Guerrero
,
J. P.
,
Pontedeiro
,
E.
,
van Genuchten
,
M. T.
, and
Skaggs
,
T.
,
2013
, “
Analytical Solutions of the One-Dimensional Advection–Dispersion Solute Transport Equation Subject to Time-Dependent Boundary Conditions
,”
Chem. Eng. J.
,
221
, pp.
487
491
.
55.
Hibbitt
,
K.
,
2005
, “
Sorensen, inc. abaqus/explicit user's manual, version 6.5. 1.
,” Providence, RI.
56.
Nabavizadeh
,
A.
,
Kinnick
,
R. R.
,
Bayat
,
M.
,
Amador
,
C.
,
Urban
,
M. W.
,
Alizad
,
A.
, and
Fatemi
,
M.
,
2017
, “
Automated Compression Device for Viscoelasticity Imaging
,”
IEEE Trans. Bio-Med. Eng.
,
64
(
7
), pp.
1535
1546
.
57.
Lekka
,
M.
,
2016
, “
Discrimination Between Normal and Cancerous Cells Using Afm
,”
Bionanoscience
,
6
(
1
), pp.
65
80
.
58.
Soltani
,
M.
, and
Chen
,
P.
,
2011
, “
Numerical Modeling of Fluid Flow in Solid Tumors
,”
PloS One
,
6
(
6
), p.
e20344
.
59.
Laperrousaz
,
B.
,
Drillon
,
G.
,
Berguiga
,
L.
,
Nicolini
,
F.
,
Audit
,
B.
,
Satta
,
V. M.
,
Arneodo
,
A.
, and
Argoul
,
F.
,
2016
, “
From Elasticity to Inelasticity in Cancer Cell Mechanics: A Loss of Scale-Invariance
,”
AIP Conf. Proc.
,
1760
, p.
020040
.
60.
Zhao
,
X.
,
Zhong
,
Y.
,
Ye
,
T.
,
Wang
,
D.
, and
Mao
,
B.
,
2015
, “
Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy
,”
Nanoscale Res. Lett.
,
10
(
1
), pp.
1
8
.
61.
Xu
,
W.
,
Mezencev
,
R.
,
Kim
,
B.
,
Wang
,
L.
,
McDonald
,
J.
, and
Sulchek
,
T.
,
2012
, “
Cell Stiffness Is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells
,”
PloS One
,
7
(
10
), p.
e46609
.
62.
Jain
,
R. K.
,
1987
, “
Transport of Molecules in the Tumor Interstitium: A Review
,”
Cancer Res.
,
47
(
12
), pp.
3039
3051
.http://cancerres.aacrjournals.org/content/47/12/3039.long
You do not currently have access to this content.