Most injury risk functions (IRFs) for dynamic axial loading of the leg have been targeted toward automotive applications such as predicting injury caused by intrusion into the occupant compartment from frontal collisions. Recent focus on leg injuries in the military has led to questions about the applicability of these IRFs shorter duration, higher amplitude loading associated with underbody blast (UBB). To investigate these questions, data were collected from seven separate test series that subjected post-mortem human legs to axial impact. A force and impulse-based Weibull survival model was developed from these studies to estimate fracture risk. Specimen age was included as a covariate to reduce variance and improve survival model fit. The injury criterion estimated 50% risk of injury for a leg exposed to 13 N s of impulse at peak force and 8.07 kN of force for force durations less than and greater than half the natural period of the leg, respectively. A supplemental statistical analysis estimated that the proposed IRF improves injury prediction accuracy by more than 9% compared to the predictions from automobile-based risk functions developed for automotive intrusion. The proposed leg IRF not only improves injury prediction for higher rate conditions but also provides a single injury prediction tool for an expanded range of load durations ranging from 5 to 90 ms, which spans both automotive and military loading environments.

References

1.
Funk
,
J. R.
,
2002
, “
The Axial Injury Tolerance of the Human Foot/Ankle Complex and the Effect of Achilles Tension
,”
ASME J. Biomech. Eng.
,
124
(
6
), pp.
750
757
.
2.
Kitagawa
,
Y. I.
,
1998
, “
Lower Leg Injuries Caused by Dynamic Axial Loading and Muscle Testing
,”
International Technical Conference on the Enhanced Safety of Vehicles
,
National Highway Traffic Safety Administration, Windsor, ON, Canada
,
May 31–June 4
, pp.
1597
1607
.
3.
Klopp
,
G. S.
,
Crandall
,
J. R.
,
Hall
,
G. W.
,
Pilkey
,
W. D.
,
Hurwitz
,
S. R.
, and
Kuppa
,
S. M.
,
1997
, “
Mechanisms of Injury and Injury Criteria for the Human Foot and Ankle in Dynamic Axial Impacts to the Foot
,”
IRCOBI Conference
, Antwerp, Belgium, Sept. 13–15.http://www.ircobi.org/wordpress/downloads/irc1997/pdf_files/1997_4.pdf
4.
McKay
,
B. J.
, and
Bir
,
C. A.
,
2009
, “
Lower Extremity Injury Criteria for Evaluating Military Vehicle Occupant Injury in Underbelly Blast Events
,”
Stapp Car Crash J.
,
53
(
1
), pp.
229
249
.
5.
Yoganandan
,
N.
,
Arun
,
M. W. J.
,
Pintar
,
F. A.
, and
Szabo
,
A.
,
2014
, “
Optimized Lower Leg Injury Probability Curves From Postmortem Human Subject Tests Under Axial Impacts
,”
Traffic Inj. Prev.
,
15
(
Suppl. 1
), pp.
S151
S156
.
6.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Boynton
,
M.
,
Begeman
,
P.
,
Prasad
,
P.
,
Kuppa
,
S. M.
,
Morgan
,
R. M.
, and
Eppinger
,
R. H.
,
1996
, “
Dynamic Axial Tolerance of the Human Foot-Ankle Complex
,”
SAE
Paper No. 962426.
7.
Bailey
,
A.
,
McMurry
,
T.
,
Poplin
,
G.
,
Salzar
,
R.
, and
Crandall
,
J.
,
2015
, “
Survival Model for Foot and Leg High Rate Axial Impact Injury Data
,”
Traffic Inj. Prev.
,
16
(
Suppl. 2
), pp. S96–S102.
8.
Mertz
,
H. J.
,
1984
, “
Injury Assessment Values Used to Evaluate Hybrid III Response Measurements
,”
NHTSA Docket
74-14, Notice 32.
9.
Stech
,
E. L.
, and
Payne
,
P. R.
,
1969
, “
Dynamic Models of the Human Body
,” Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, OH, Report No. AAMRL-TR-66-157.
10.
Viano
,
D. C.
,
1977
, “
Considerations for a Femur Injury Criterion
,”
SAE
Paper No. 770925.
11.
Martinez
,
A. A.
,
Chakravarty
,
A. B.
, and
Quenneville
,
C. E.
,
2018
, “
The Effect of Impact Duration on the Axial Fracture Tolerance of the Isolated Tibia During Automotive and Military Impacts
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
315
320
.
12.
Bailey
,
A. M.
,
Perry
,
B. J.
, and
Salzar
,
R. S.
,
2017
, “
Response and Injury of the Human Leg for a Range of Axial Impact Durations
,”
Ann. Biomed. Eng.
,
22
(
5
), pp.
479
487
.
13.
von Gierke
,
H.
,
1964
, “
Transient Acceleration, Vibration and Noise Problems in Space Flight
,”
Bioastronautics
,
Macmillan
,
New York
, pp.
27
75
.
14.
Von Gierke
,
H. E.
,
1964
, “
Biodynamic Response of the Human Body
,”
ASME Appl. Mech. Rev.
,
17
(
12
), pp.
951
958
.
15.
Crandall
,
J. R.
,
Martin
,
P. G.
,
Sieveka
,
E. M.
,
Klopp
,
G. S.
,
Kuhlmann
,
T. P.
,
Pilkey
,
W. D.
,
Dischinger
,
P. C.
,
Burgess
,
A. R.
,
O'quinn
,
T. D.
, and
Schmidhauser
,
C. B.
,
1995
, “
The Influence of Footwell Intrusion on Lower Extremity Response and Injury in Frontal Crashes
,”
39th Annual Meeting of the Association for the Advancement of Automotive Medicine
, Chicago, IL, Oct. 16–18, pp.
269
286
.https://trid.trb.org/view/452501
16.
Wang
,
J.
,
Bird
,
R.
,
Swinton
,
B.
, and
Krstic
,
A.
,
2001
, “
Protection of Lower Limbs against Floor Impact in Army Vehicles Experiencing Landmine Explosion
,”
J. Battlefield Technol.
,
4
(
3
), pp.
11
5
.
17.
Weis
,
E. B.
, Jr.
,
Clarke
,
N. P.
, and
Brinkley
,
J. W.
,
1963
, “
Human Response to Several Impact Acceleration Orientations and Patterns
,” Air Force Aerospace Medical Research Laboratory, Wright-Patterson AFB, OH, DTIC Document No. AMRL-TR63-145.
18.
Gabler
,
L.F.
,
Joodaki
,
H.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2018
. “
Development of a Single-Degree-of-Freedom Mechanical Model for Predicting Strain-Based Brain Injury Responses
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
031002
.
19.
Gabler
,
L. F.
,
Joodaki
,
H.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2016
, “
Toward Development of a Single-Degree-of-Freedom Mechanical Model for Predicting Brain Injury
,”
IRCOBI ASIA Conference
, Seoul, South Korea, May 16–18.https://trid.trb.org/view/1423483
20.
Perry
,
B. J.
,
Gabler
,
L.
,
Bailey
,
A.
,
Henderson
,
K.
,
Brozoski
,
F.
, and
Salzar
,
R. S.
,
2015
, “
Lower Extremity Characterization and Injury Mitigation
,”
IRCOBI Conference
, Berlin, Germany, Sept. 10–12.
21.
Gallenberger
,
K.
,
2013
, “
Foot and Ankle Injuries in Variable Energy Impacts
,”
Master's thesis
, Marquette University, Milwaukee, WI.https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1185&context=theses_open
22.
Funk
,
J. R.
,
Tourret
,
L. J.
,
George
,
S. E.
, and
Crandall
,
J. R.
,
2000
, “
The Role of Axial Loading in Malleolar Fractures
,”
SAE
Paper No. 2000-01-0155.
23.
Henderson
,
K.
,
Bailey
,
A.
,
Christopher
,
J.
,
Brozoski
,
F.
, and
Salzar
,
R.
,
2013
, “
Biomechanical Response of the Lower Leg Under High Rate Loading
,”
IRCOBI Conference
, Gothenburg, Sweden, Sept. 11–13.http://www.ircobi.org/wordpress/downloads/irc13/pdf_files/24.pdf
24.
NHTSA, 2017, “
Databases and Software
,” National Highway Traffic Safety Administration, Washington, DC, accessed Mar. 27,
2017
, www.nhtsa.gov/research-data/databases-and-software
25.
Calhoun
,
J. H.
,
Li
,
F.
,
Ledbetter
,
B. R.
, and
Viegas
,
S. F.
,
1994
, “
A Comprehensive Study of Pressure Distribution in the Ankle Joint With Inversion and Eversion
,”
Foot Ankle Int.
,
15
(
3
), pp.
125
133
.
26.
Funk
,
J. R.
,
2011
, “
Ankle Injury Mechanisms: Lessons Learned From Cadaveric Studies
,”
Clin. Anat.
,
24
(
3
), pp.
350
361
.
27.
Gallenberger
,
K.
,
Yoganandan
,
N.
, and
Pintar
,
F.
,
2013
, “
Biomechanics of Foot/Ankle Trauma With Variable Energy Impacts
,”
Ann. Adv. Automot. Med.
,
57
(
123
), pp.
123
132
.
28.
Bailey
,
A. M.
,
McMurry
,
T.
,
Poplin
,
G. S.
,
Salzar
,
R. S.
, and
Crandall
,
J. R.
,
2015
, “
Survival Model for Foot and Leg High Rate Axial Impact Injury Data
,”
Traffic Inj. Prev.
,
16
(
Suppl. 2
), pp.
S96
S102
.
29.
McMurry
,
T. L.
, and
Poplin
,
G. S.
,
2014
, “
Statistical Considerations in the Development of Injury Risk Functions
,”
Traffic Inj. Prev.
,
16
(
6
), pp.
618
626
.
30.
Kuppa
,
S.
,
Wang
,
J.
,
Haffner
,
M.
, and
Eppinger
,
R.
,
2001
, “
Lower Extremity Injuries and Associated Injury Criteria
,”
17th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
,
Amsterdam, The Netherlands
,
June 4–7
, Paper No. 457.http://wbldb.lievers.net/10067010.html
31.
Yoganandan
,
N.
,
Arun
,
M. W.
,
Pintar
,
F. A.
, and
Banerjee
,
A.
,
2015
, “
Lower Leg Injury Reference Values and Risk Curves From Survival Analysis for Male and Female Dummies: Meta-Analysis of Postmortem Human Subject Tests
,”
Traffic Inj. Prev.
,
16
(
Suppl. 1
), pp.
S100
S107
.
32.
Hanley
,
J. A.
, and
McNeil
,
B. J.
,
1982
, “
The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve
,”
Radiology
,
143
(
1
), pp.
29
36
.
33.
Yule
,
G. U.
,
1912
, “
On the Methods of Measuring Association Between Two Attributes
,”
J. R. Stat. Soc.
,
75
(
6
), pp.
579
652
.
34.
Goodman
,
L. A.
, and
Kruskal
,
W. H.
,
1979
, “
Measures of Association for Cross Classifications
,”
J. Am. Stat. Assoc.
,
49
(
268
), pp.
732
764
.
35.
Nieves
,
J. W.
,
Formica
,
C.
,
Ruffing
,
J.
,
Zion
,
M.
,
Garrett
,
P.
,
Lindsay
,
R.
, and
Cosman
,
F.
,
2005
, “
Males Have Larger Skeletal Size and Bone Mass Than Females, Despite Comparable Body Size
,”
J. Bone Miner. Res.
,
20
(
3
), pp.
529
535
.https://www.ncbi.nlm.nih.gov/pubmed/15746999
36.
Metz
,
C. E.
,
1978
, “
Basic Principles of ROC Analysis
,”
Semin. Nucl. Med.
,
8
(
4
), pp.
283
298
.
You do not currently have access to this content.