Acoustic radiation force (ARF) creep imaging applies step ARF excitation to induce creep displacement of soft tissue, and the corresponding time-dependent responses are used to estimate soft tissue viscoelasticity or its contrast. Single degree of freedom (SDF) and homogeneous analytical models have been used to characterize soft tissue viscoelasticity in ARF creep imaging. The purpose of this study is to investigate the fundamental limitations of the commonly used SDF and homogeneous assumptions in ARF creep imaging. In this paper, finite element (FE) models are developed to simulate the dynamic behavior of viscoelastic soft tissue subjected to step ARF. Both homogeneous and heterogeneous models are studied with different soft tissue viscoelasticity and ARF configurations. The results indicate that the SDF model can provide good estimations for homogeneous soft tissue with high viscosity, but exhibits poor performance for low viscosity soft tissue. In addition, a smaller focal region of the ARF is desirable to reduce the estimation error with the SDF models. For heterogeneous media, the responses of the focal region are highly affected by the local heterogeneity, which results in deterioration of the effectiveness of the SDF and homogeneous simplifications.

References

1.
Sugimoto
,
T.
,
Ueha
,
S.
, and
Itoh
,
K.
,
1990
, “
Tissue Hardness Measurement Using the Radiation Force of Focused Ultrasound
,”
Proceedings of the IEEE Ultrasonics Symposium
,
Honolulu, HI
, Dec. 4–7, pp.
1377
1380
.
2.
Sarvazyan
,
A. P.
,
Rudenko
,
O. V.
,
Swanson
,
S. D.
,
Fowlkes
,
J. B.
, and
Emelianov
,
S. Y.
,
1998
, “
Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics
,”
Ultrasound Med. Biol.
,
24
(
9
), pp.
1419
1435
.10.1016/S0301-5629(98)00110-0
3.
Bercoff
,
J.
,
Tanter
,
M.
, and
Fink
,
M.
,
2004
, “
Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
51
(
4
), pp.
396
409
.10.1109/TUFFC.2004.1295425
4.
Nightingale
,
K.
,
McAleavey
,
S.
, and
Trahey
,
G.
,
2003
, “
Shear-Wave Generation Using Acoustic Radiation Force: In Vivo and Ex Vivo Results
,”
Ultrasound Med. Biol.
,
29
(
12
), pp.
1715
1723
.10.1016/j.ultrasmedbio.2003.08.008
5.
Chen
,
S.
,
Urban
,
M.
,
Pislaru
,
C.
,
Kinnick
,
R.
,
Zheng
,
Y.
,
Yao
,
A.
, and
Greenleaf
,
J.
,
2009
, “
Shearwave Dispersion Ultrasound Vibrometry (SDUV) for Measuring Tissue Elasticity and Viscosity
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
56
(
1
), pp.
55
62
.10.1109/TUFFC.2009.1005
6.
Vappou
,
J.
,
Maleke
,
C.
, and
Konofagou
,
E. E.
,
2009
, “
Quantitative Viscoelastic Parameters Measured by Harmonic Motion Imaging
,”
Phys. Med. Biol.
,
54
(
11
), pp.
3579
3594
.10.1088/0031-9155/54/11/020
7.
Walker
,
W. F.
,
Fernandez
,
F. J.
, and
Negron
,
L. A.
,
2000
, “
A Method of Imaging Viscoelastic Parameters With Acoustic Radiation Force
,”
Phys. Med. Biol.
,
45
(
6
), pp.
1437
1447
.10.1088/0031-9155/45/6/303
8.
Viola
,
F.
, and
Walker
,
W. F.
,
2003
, “
Radiation Force Imaging of Viscoelastic Properties With Reduced Artifacts
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
50
(
6
), pp.
736
742
.10.1109/TUFFC.2003.1209564
9.
Mauldin
,
F. W.
,
Haider
,
M. A.
,
Loboa
,
E. G.
,
Behler
,
R. H.
,
Euliss
,
L. E.
,
Pfeiler
,
T. W.
, and
Gallippi
,
C. M.
,
2008
, “
Monitored Steady-State Excitation and Recovery (MSSR) Radiation Force Imaging Using Viscoelastic Models
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
55
(
7
), pp.
1597
1610
.10.1109/TUFFC.2008.836
10.
Amador
,
C.
,
Urban
,
M. W.
,
Chen
,
S.
, and
Greenleaf
,
J. F.
,
2012
, “
Loss Tangent and Complex Modulus Estimated by Acoustic Radiation Force Creep and Shear Wave Dispersion
,”
Phys. Med. Biol.
,
57
(
5
), pp.
1263
1282
.10.1088/0031-9155/57/5/1263
11.
Scola
,
M. R.
,
Baggesen
,
L. M.
, and
Gallippi
,
C. M.
,
2012
, “
Multi-Push (MP) Acoustic Radiation Force (ARF) Ultrasound for Assessing Tissue Viscoelasticity, In Vivo
,”
2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, San Diego, CA, Aug. 28–Sept. 1, pp.
2323
2326
.
12.
Palmeri
,
M. L.
,
McAleavey
,
S. A.
,
Fong
,
K. L.
,
Trahey
,
G. E.
, and
Nightingale
,
K. R.
,
2006
, “
Dynamic Mechanical Response of Elastic Spherical Inclusions to Impulsive Acoustic Radiation Force Excitation
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
53
(
11
), pp.
2065
2079
.10.1109/TUFFC.2006.146
13.
Zhao
,
X.
, and
Pelegri
,
A. A.
,
2014
, “
Modelling of Global Boundary Effects on Harmonic Motion Imaging of Soft Tissues
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
9
), pp.
1021
1031
.10.1080/10255842.2012.736500
14.
Zhang
,
Y.
,
Hall
,
L. O.
,
Goldgof
,
D. B.
, and
Sarkar
,
S.
,
2006
, “
A Constrained Genetic Approach for Computing Material Property of Elastic Objects
,”
IEEE Trans. Evol. Comput.
,
10
(
3
), pp.
341
357
.10.1109/TEVC.2005.860767
15.
Catheline
,
S.
,
Gennisson
,
J. L.
,
Delon
,
G.
,
Fink
,
M.
,
Sinkus
,
R.
,
Abouelkaram
,
S.
, and
Culioli
,
J.
,
2004
, “
Measurement of Viscoelastic Properties of Homogeneous Soft Solid Using Transient Elastography: An Inverse Problem Approach
,”
J. Acoust. Soc. Am.
,
116
(
6
), pp.
3734
3741
.10.1121/1.1815075
16.
Skovoroda
,
A. R.
, and
Sarvazyan
,
A. P.
,
1999
, “
Determination of Viscoelastic Shear Characteristics of a Medium From Its Response to Focused Ultrasonic Loading
,”
Biophysics
,
44
, pp.
325
329
.
17.
Nightingale
,
K. R.
,
Rouze
,
N. C.
,
Wang
,
M. H.
,
Zhai
,
L.
, and
Palmeri
,
M. L.
,
2011
, “
Comparison of Qualitative and Quantitative Acoustic Radiation Force Based Elasticity Imaging Methods
,”
2011 IEEE International Symposium on IEEE, Biomedical Imaging: From Nano to Macro
, Chicago, IL, Mar. 30–Apr. 2, pp.
1606
1609
.
18.
Bower
,
A. F.
,
2010
,
Applied Mechanics of Solids
,
CRC Press
,
Boca Raton, FL
.
19.
ABAQUS 6.11 Documentation,
2011
, Providence, RI, Dassault Systèmes Simulia Corp.
20.
Sarvazyan
,
A. P.
,
Skovoroda
,
A. R.
,
Emelianov
,
S. Y.
,
Fowlkes
,
J. B.
,
Pipe
,
J. G.
,
Adler
,
R. S.
,
Buxton
,
R. B.
, and
Carson
,
P. L.
,
1995
, “
Biophysical Bases of Elasticity Imaging
,”
Acoustical Imaging
,
Springer
, New York, pp.
223
240
.
21.
Wells
,
P. N.
, and
Liang
,
H. D.
,
2011
, “
Medical Ultrasound: Imaging of Soft Tissue Strain and Elasticity
,”
J. R. Soc., Interface
,
8
(
64
), pp.
1521
1549
.10.1098/rsif.2011.0054
22.
Maleke
,
C.
,
Luo
,
J.
,
Gamarnik
,
V.
,
Lu
,
X. L.
, and
Konofagou
,
E. E.
,
2010
, “
Simulation Study of Amplitude-Modulated (AM) Harmonic Motion Imaging (HMI) for Stiffness Contrast Quantification With Experimental Validation
,”
Ultrason. Imaging
,
32
(
3
), pp.
154
176
.10.1177/016173461003200304
23.
Nightingale
,
K.
,
Palmeri
,
M.
, and
Trahey
,
G.
,
2006
, “
Analysis of Contrast in Images Generated With Transient Acoustic Radiation Force
,”
Ultrasound Med. Biol.
,
32
(
1
), pp.
61
72
.10.1016/j.ultrasmedbio.2005.08.008
You do not currently have access to this content.