In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics.

References

1.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
J. Biomech. Eng.
,
127
, pp.
364
373
.
2.
Spilker
,
R. L.
,
Feinstein
,
J. A.
,
Parker
,
D. W.
,
Reddy
,
V. M.
, and
Taylor
,
C. A.
, 2007, “
Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries
,”
Ann. Biomed. Eng.
,
35
, pp.
546
559
.
3.
Wang
,
L.
,
Zhang
,
H.
,
Shi
,
P.
, and
Liu
,
H.
, 2006, “
Imaging of 3D Cardiac Electrical Activity: A Model-Based Recovery Framework
,”
Med. Image Comput. Comput. Assist. Interv.
,
9
, pp.
792
799
.
4.
Speelman
,
L.
,
Bohra
,
A.
,
Bosboom
,
E. M.
,
Schurink
,
G. W.
,
van de Vosse
,
F. N.
,
Makaorun
,
M. S.
, and
Vorp
,
D. A.
, 2007, “
Effects of Wall Calcifications in Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms
,”
J. Biomech. Eng.
,
129
, pp.
105
109
.
5.
Portnoy
,
S.
,
Yarnitzky
,
G.
,
Yizhar
,
Z.
,
Kristal
,
A.
,
Oppenheim
,
U.
,
Siev-Ner
,
I.
, and
Gefen
,
A.
, 2007, “
Real-Time Patient-Specific Finite Element Analysis of Internal Stresses in the Soft Tissues of a Residual Limb: A New Tool for Prosthetic Fitting
,”
Ann. Biomed. Eng.
,
35
, pp.
120
135
.
6.
Schmid-Schonbein
,
G. W.
, and
Diller
,
K. R.
, 2005, “
Transport Processes in Biomedical Systems: A Roadmap for Future Research Directions
,”
Ann. Biomed. Eng.
,
33
, pp.
1136
1141
.
7.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
J. Biomech. Eng.
,
125
, pp.
434
438
.
8.
Li
,
L. P.
, and
Herzog
,
W.
, 2006, “
Arthroscopic Evaluation of Cartilage Degeneration Using Indentation Testing—Influence of Indenter Geometry
,”
Clin. Biomech. (Bristol, Avon)
,
21
, pp.
420
426
.
9.
Li
,
L. P.
, and
Herzog
,
W.
, 2005, “
Electromechanical Response of Articular Cartilage in Indentation—Considerations on the Determination of Cartilage Properties During Arthroscopy
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
, pp.
83
91
.
10.
Davids
,
N.
, and
Mani
,
M. K.
, 1974, “
A Finite Element Analysis of Endothelial Shear Stress for Pulsatile Blood Flow
,”
Biorheology
,
11
, pp.
137
147
. Available at http://www.ncbi.nlm.nih.gov/pubmed/4441640http://www.ncbi.nlm.nih.gov/pubmed/4441640.
11.
Doyle
,
J. M.
, and
Dobrin
,
P. B.
, 1971, “
Finite Deformation Analysis of the Relaxed and Contracted Dog Carotid Artery
,”
Microvasc. Res.
,
3
, pp.
400
415
.
12.
Janz
,
R. F.
, and
Grimm
,
A. F.
, 1972, “
Finite-Element Model for the Mechanical Behavior of the Left Ventricle. Prediction of Deformation in the Potassium-Arrested Rat Heart
,”
Circ. Res.
,
30
, pp.
244
252
.
13.
Matthews
,
F. L.
, and
West
,
J. B.
, 1972, “
Finite Element Displacement Analysis of a Lung
,”
J. Biomech.
,
5
, pp.
591
600
.
14.
Farah
,
J. W.
,
Craig
,
R. G.
, and
Sikarskie
,
D. L.
, 1973, “
Photoelastic and Finite Element Stress Analysis of a Restored Axisymmetric First Molar
,”
J. Biomech.
,
6
, pp.
511
520
.
15.
Belytschko
,
T.
,
Kulak
,
R. F.
,
Schultz
,
A. B.
, and
Galante
,
J. O.
, 1974, “
Finite Element Stress Analysis of an Intervertebral Disc
,”
J. Biomech.
,
7
, pp.
277
285
.
16.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
, pp.
171
184
.
17.
Henninger
,
H. B.
,
Reese
,
S. P.
,
Anderson
,
A. E.
, and
Weiss
,
J. A.
, 2010, “
Validation of Computational Models in Biomechanics
,”
Proc. Inst. Mech. Eng. Part H, J. Eng. Med.
,
224
, pp.
801
812
.
18.
Maas
,
S. A.
, and
Weiss
,
J. A.
, 2007, FEBio User’s Manual, http://mrl.sci.utah.edu/software/febiohttp://mrl.sci.utah.edu/software/febio.
19.
ASME, 2006, “
Guide for Verification and Validation in Computational Solid Mechanics
,” ASME Committee (PT60) on Verification and Validation in Computational Solid Mechanics.
20.
Babuska
,
I.
, and
Oden
,
J. T.
, 2004, “
Verification and Validation in Computational Engineering and Science: Basic Concepts
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
4057
4066
.
21.
Maas
,
S. A.
, and
Weiss
,
J. A.
, 2007, FEBio Theory Manual, http://mrl.sci.utah.edu/software/febiohttp://mrl.sci.utah.edu/software/febio.
22.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, NY
.
23.
Matthies
,
H.
, and
Strang
,
G.
, 1979, “
The Solution of Nonlinear Finite Element Equations
,”
Int. J. Num. Methods Eng.
,
14
, pp.
1613
1626
.
24.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, NY
.
25.
Simo
,
J. C.
, and
Taylor
,
R. L.
, 1991, “
Quasi-Incompressible Finite Elasticity in Principal Stretches: Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
85
, pp.
273
310
.
26.
Puso
,
M. A.
, and
Solberg
,
J.
, 2006, “
A Stabilized Nodally Integrated Tetrahedral
,”
Int. J. Num. Methods Eng.
,
67
, pp.
841
867
.
27.
Betsch
,
P.
, and
Gruttmann
,
F.
, 1996, “
A 4-Node Finite Shell Element for the Implementation of General Hyperelastic 3D-Elasticity at Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
,
130
, pp.
57
79
.
28.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
29.
Ateshian
,
G. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
, 2007, “
Equivalence Between Short-Time Biphasic and Incompressible Elastic Material Response
,”
J. Biomech. Eng.
129
(
3
), pp.
405
412
.
30.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
, pp.
107
128
.
31.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
, 2010, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
J. Biomech. Eng.
,
132
, p.
061006
.
32.
Laursen
,
T. A.
, and
Maker
,
B. N.
, 1995, “
Augmented Lagrangian Quasi-Newton Solver for Constrained Nonlinear Finite Element Applications
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
3571
3590
.
33.
Maker
,
B. N.
, 1995, “
Rigid Bodies for Metal Forming Analysis With NIKE3D
,” University of California, Lawrence Livermore Laboratory, Report No. UCRL-JC-119862, pp.
1
8
.
34.
Schenk
,
O.
, and
Gartner
,
K.
, 2004, “
Solving Unsymmetric Sparse Systems of Linear Equations With PARDISO
,”
J. Future Gen. Comput. Syst.
,
20
, pp.
475
487
.
35.
Schenk
,
O.
, and
Gartner
,
K.
, 2006, “
On Fast Factorization Pivoting Methods for Symmetric Indefinite Systems
,”
Elect. Trans. Numer. Anal.
,
23
, pp.
158
179
. Available at http://etna.mcs.kent.edu/http://etna.mcs.kent.edu/.
36.
Demmel
,
J. W.
,
Eisenstat
,
S. C.
,
Gilbert
,
J. R.
,
Li
,
X. S.
, and
Liu
,
J. W. H.
, 1999, “
A Supernodal Approach to Sparse Partial Pivoting
,”
SIAM J. Matrix Anal. Appl.
,
20
, pp.
720
755
.
37.
Gupta
,
A.
, “
WSMP: Watson Sparse Matrix Package
,” IBM Research Report No. RC 21888 (98472), 2000.
38.
Veldhuizen
,
T.
,
Jernigan
,
M.
,
Ishikawa
,
Y.
,
Oldehoeft
,
R.
,
Reynders
,
J.
, and
Tholburn
,
M.
, 1997, “
Will C++ be Faster than FORTRAN? Scientific Computing in Object-Oriented Parallel Environments
,”
Lect. Notes Comput. Sci.
,
1343
, pp.
49
56
.
39.
Maker
,
B. N.
, 1995, “
NIKE3D: A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics
,” Lawrence Livermore Laboratory Technical Report No. UCRL-MA-105268.
40.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
, 2003, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,”
J. Biomech.
,
36
, pp.
1785
1796
.
41.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformations
,
Ellis Horwood
,
Chichester, UK
.
42.
Erdemir
,
A.
,
Viveiros
,
M. L.
,
Ulbrecht
,
J. S.
, and
Cavanagh
,
P. R.
, 2006, “
An Inverse Finite-Element Model of Heel-Pad Indentation
,”
J. Biomech.
,
39
, pp.
1279
1286
.
43.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
, 1997, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
44.
Holmes
,
M. H.
, 1986, “
Finite Deformation of Soft Tissue: Analysis of a Mixture Model in Uni-Axial Compression
,”
J. Biomech. Eng.
,
108
, pp.
372
381
.
45.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech. Eng.
,
106
, pp.
165
173
.
46.
Oden
,
J. T.
, 1972,
Finite Elements of Nonlinear Continua
,
McGraw-Hill
,
New York
.
47.
Treloar
,
L. R. G.
, 1944, “
Stress-Strain Data for Vulcanised Rubber Under Various Types of Deformation
,”
Trans. Faraday Soc.
,
40
, pp.
59
70
.
48.
Bisshopp
,
R. E.
, and
D. C.
Drucker
, 1945, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
,
3
, pp.
272
275
.
49.
Batoz
,
J. L.
, 1982, “
An Explicit Formulation for an Efficient Triangular Plate Bending Element
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
1077
1089
.
50.
Moore
,
S. M.
,
Ellis
,
B. J.
,
Weiss
,
J. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
, 2010, “
The Glenohumeral Capsule Should be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
66
76
.
51.
Drury
,
N. J.
,
Ellis
,
B. J.
,
Weiss
,
J. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
, 2011, “
Finding Consistent Strain Distributions in the Glenohumeral Capsule Between Two Subjects: Implications for Physical Examinations
,”
J. Biomech.
,
44
, pp.
607
613
.
You do not currently have access to this content.