Growth mechanics problems require the solution of mass balance equations that include supply terms and account for mass exchanges among constituents of a mixture. Though growth may often be accompanied by a variety of concomitant phenomena that increase modeling complexity, such as solid matrix deformation, evolving traction-free configurations, cell division, and active cell contraction, it is important to distinguish these accompanying phenomena from the fundamental growth process that consists of deposition or removal of mass from the solid matrix. Therefore, the objective of this study is to present a canonical problem of growth, namely, dissolution of a rigid solid matrix in a solvent. This problem illustrates a case of negative growth (loss of mass) of the solid in a mixture framework that includes three species, a solid, a solvent, and a solute, where the solute is the product of the solid dissolution. By analyzing both volumetric and surface dissolutions, the two fundamental modes of growth are investigated within the unified framework of mixture theory.

1.
Skalak
,
R.
,
Dasgupta
,
G.
,
Moss
,
M.
,
Otten
,
E.
,
Dullumeijer
,
P.
, and
Vilmann
,
H.
, 1982, “
Analytical Description of Growth
,”
J. Theor. Biol.
0022-5193,
94
(
3
), pp.
555
577
.
2.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
455
467
.
3.
Cowin
,
S. C.
, and
Hegedus
,
D. H.
, 1976, “
Bone Remodeling—1. Theory of Adaptive Elasticity
,”
J. Elast.
0374-3535,
6
(
3
), pp.
313
326
.
4.
Skalak
,
R.
,
Farrow
,
D. A.
, and
Hoger
,
A.
, 1997, “
Kinematics of Surface Growth
,”
J. Math. Biol.
0303-6812,
35
(
8
), pp.
869
907
.
5.
Epstein
,
M.
, and
Maugin
,
G. A.
, 2000, “
Thermomechanics of Volumetric Growth in Uniform Bodies
,”
Int. J. Plast.
0749-6419,
16
(
7–8
), pp.
951
978
.
6.
Ateshian
,
G. A.
, 2007, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
(
6
), pp.
423
445
.
7.
Klisch
,
S. M.
,
Sah
,
R. L.
, and
Hoger
,
A.
, 2000, “
A Growth Mixture Theory for Cartilage
,”
AMD (Am. Soc. Mech. Eng.)
0160-8835,
242
, pp.
229
242
.
8.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2002, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
(
3
), pp.
407
430
.
9.
Byrne
,
H.
, and
Preziosi
,
L.
, 2003, “
Modelling Solid Tumour Growth Using the Theory of Mixtures
,”
IMA J. Math. Appl. Med. Biol.
0265-0746,
20
(
4
), pp.
341
366
.
10.
Garikipati
,
K.
,
Arruda
,
E.
,
Grosh
,
K.
,
Narayanan
,
H.
, and
Calve
,
S.
, 2004, “
A Continuum Treatment of Growth in Biological Tissue: The Coupling of Mass Transport and Mechanics
,”
J. Mech. Phys. Solids
0022-5096,
52
(
7
), pp.
1595
1625
.
11.
Araujo
,
R. P.
, and
McElwain
,
D. S.
, 2005, “
A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues I: A General Formulation
,”
SIAM J. Appl. Math.
0036-1399,
65
(
4
), pp.
1261
1284
.
12.
Truesdell
,
C.
, and
Toupin
,
R.
, 1960, “
The Classical Field Theories
,”
Handbuch der Physik
,
S.
Flugge
, ed.,
Springer-Verlag
,
Berlin
, Vol.
III
/1.
13.
Bowen
,
R. M.
, 1976, “
Theory of Mixtures
,”
Continuum Physics
,
A. E.
Eringen
, ed.,
Academic
,
New York
, Vol.
3
, pp.
1
127
.
14.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
(
9
), pp.
1129
1148
.
15.
Bowen
,
R.
, and
Wiese
,
J.
, 1969, “
Diffusion in Mixtures of Elastic Materials
,”
Int. J. Eng. Sci.
0020-7225,
7
(
7
), pp.
689
722
.
16.
Eringen
,
A.
, and
Ingram
,
J.
, 1965, “
Continuum Theory of Chemically Reacting Media—1
,”
Int. J. Eng. Sci.
0020-7225,
3
, pp.
197
212
.
17.
Ateshian
,
G. A.
,
Costa
,
K. D.
,
Azeloglu
,
E. U.
,
Morrison
,
B. I.
, and
Hung
,
C. T.
, 2009, “
Continuum Modeling of Biological Tissue Growth by Cell Division, and Alteration of Intracellular Osmolytes and Extracellular Fixed Charge Density
,”
J. Biomech. Eng.
0148-0731,
131
(
10
), p.
101001
.
18.
Wan
,
W.
,
Hansen
,
L.
, and
Gleason
,
R. L.
, Jr.
, 2010, “
A 3-D Constrained Mixture Model for Mechanically Mediated Vascular Growth and Remodeling
,”
Biomech. Model. Mechanobiol.
1617-7959,
9
(
4
), pp.
403
419
.
19.
Ateshian
,
G. A.
, and
Ricken
,
T.
, 2010, “
Multigenerational Interstitial Growth of Biological Tissues
,”
Biomech. Model. Mechanobiol.
1617-7959,
9
(
6
), pp.
689
702
.
20.
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Kohles
,
S. S.
, 2002, “
Modeling the Dynamic Composition of Engineered Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
408
(
2
), pp.
246
254
.
21.
Sanz-Herrera
,
J. A.
,
García-Aznar
,
J. M.
, and
Doblaré
,
M.
, 2009, “
On Scaffold Designing for Bone Regeneration: A Computational Multiscale Approach
,”
Acta Biomater.
1742-7061,
5
(
1
), pp.
219
229
.
22.
Frenning
,
G.
, 2004, “
Theoretical Analysis of the Release of Slowly Dissolving Drugs From Spherical Matrix Systems
,”
J. Controlled Release
0168-3659,
95
(
1
), pp.
109
117
.
23.
Dokoumetzidis
,
A.
, and
Macheras
,
P.
, 2006, “
A Century of Dissolution Research: From Noyes and Whitney to the Biopharmaceutics Classification System
,”
Int. J. Pharm.
0378-5173,
321
(
1–2
), pp.
1
11
.
24.
Noyes
,
A.
, and
Whitney
,
W.
, 1897, “
The Rate of Solution of Solid Substances in Their Own Solutions
,”
J. Am. Chem. Soc.
0002-7863,
19
, pp.
930
934
.
25.
Bowen
,
R. M.
, 1982, “
Compressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
20
(
6
), pp.
697
735
.
26.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1993, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
0021-9290,
26
(
6
), pp.
709
723
.
You do not currently have access to this content.