A thermal model was needed to predict temperatures in a perfused tissue, which satisfied the following three criteria. One, the model satisfied conservation of energy. Two, the heat transfer rate from blood vessels to tissue was modeled without following a vessel path. Three, the model applied to any unheated and heated tissue. To meet these criteria, a generic bioheat transfer model (BHTM) was derived here by conserving thermal energy in a heated vascularized finite tissue and by making a few simplifying assumptions. Two linear coupled differential equations were obtained with the following two variables: tissue volume averaged temperature and blood volume averaged temperature. The generic model was compared with the widely employed empirical Pennes’ BHTM. The comparison showed that the Pennes’ perfusion term wCp(1ε) should be interpreted as a local vasculature dependent heat transfer coefficient term. Suggestions are presented for further adaptations of the general BHTM for specific tissues using imaging techniques and numerical simulations.

1.
Van Den Berg
,
C. A.
,
Van De Kamer
,
J. B.
,
De Leeuw
,
A. A.
,
Jeukens
,
C. R.
,
Raaymakers
,
B. W.
,
Van Vulpen
,
M.
, and
Lagendijk
,
J. J.
, 2006, “
Towards Patient Specific Thermal Modelling of the Prostate
,”
Phys. Med. Biol.
0031-9155,
51
, pp.
809
825
.
2.
Hand
,
J. W.
,
Li
,
Y.
,
Thomas
,
E. L.
,
Rutherford
,
M. A.
, and
Hajnal
,
J. V.
, 2006, “
Prediction of Specific Absorption Rate in Mother and Fetus Associated With MRI Examinations During Pregnancy
,”
Magn. Reson. Med.
0740-3194,
55
, pp.
883
893
.
3.
Shrivastava
,
D.
,
Hanson
,
T.
,
Schlentz
,
R.
,
Gallaghar
,
W.
,
Snyder
,
C.
,
Delabarre
,
L.
,
Prakash
,
S.
,
Iaizzo
,
P.
, and
Vaughan
,
J. T.
, 2008, “
Radiofrequency Heating at 9.4T: In Vivo Temperature Measurement Results in Swine
,”
Magn. Reson. Med.
0740-3194,
59
, pp.
73
78
.
4.
Collins
,
C. M.
,
Liu
,
W.
,
Wang
,
J.
,
Gruetter
,
R.
,
Vaughan
,
J. T.
,
Ugurbil
,
K.
, and
Smith
,
M. B.
, 2004, “
Temperature and SAR calculations for a Human Head Within Volume and Surface Coils at 64 and 300 MHz
,”
J. Magn. Reson. Imaging
,
19
, pp.
650
656
. 1053-1807
5.
Karagoz
,
I.
, and
Kartal
,
M. K.
, 2005, “
The Effects of Residual Temperature Rise on Ultrasound Heating
,”
Ultrasound Med. Biol.
0301-5629,
31
, pp.
1665
1672
.
6.
Roemer
,
R. B.
, 1999, “
Engineering Aspects of Hyperthermia Therapy
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
, pp.
347
376
.
7.
Craciunescu
,
O. I.
,
Raaymakers
,
B. W.
,
Kotte
,
A. N.
,
Das
,
S. K.
,
Samulski
,
T. V.
, and
Lagendijk
,
J. J.
, 2001, “
Discretizing Large Traceable Vessels and Using DE-MRI Perfusion Maps Yields Numerical Temperature Contours that Match the MR Noninvasive Measurements
,”
Med. Phys.
0094-2405,
28
, pp.
2289
2296
.
8.
Craciunescu
,
O. I.
,
Das
,
S. K.
,
Mccauley
,
R. L.
,
Macfall
,
J. R.
, and
Samulski
,
T. V.
, 2001, “
3D Numerical Reconstruction of the Hyperthermia Induced Temperature Distribution in Human Sarcomas Using DE-MRI Measured Tissue Perfusion: Validation Against Non-Invasive MR Temperature Measurements
,”
Int. J. Hyperthermia
0265-6736,
17
, pp.
221
239
.
9.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
10.
Pennes
,
H. H.
, 1998, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. 1948
,”
J. Appl. Physiol.
8750-7587,
85
, pp.
5
34
.
11.
Osman
,
M. M.
, and
Afify
,
E. M.
, 1984, “
Thermal Modeling of the Normal Woman’s Breast
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
123
130
.
12.
Brinck
,
H.
, and
Werner
,
J.
, 1994, “
Efficiency Function: Improvement of Classical Bioheat Approach
,”
J. Appl. Physiol.
8750-7587,
77
, pp.
1617
1622
.
13.
Weinbaum
,
S.
,
Xu
,
L. X.
,
Zhu
,
L.
, and
Ekpene
,
A.
, 1997, “
A New Fundamental Bioheat Equation for Muscle Tissue: Part I–Blood Perfusion Term
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
278
288
.
14.
Wren
,
J.
,
Karlsson
,
M.
, and
Loyd
,
D.
, 2001, “
A Hybrid Equation for Simulation of Perfused Tissue During Thermal Treatment
,”
Int. J. Hyperthermia
0265-6736,
17
, pp.
483
498
.
15.
Wulff
,
W.
, 1974, “
The Energy Conservation Equation for Living Tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-21
, pp.
494
495
.
16.
Klinger
,
H. G.
, 1974, “
Heat Transfer in Perfused Biological Tissue. I. General Theory
,”
Bull. Math. Biol.
0092-8240,
36
, pp.
403
415
.
17.
Klinger
,
H. G.
, 1978, “
“Heat Transfer in Perfused Biological Tissue–II. The ‘Macroscopic’ Temperature Distribution in Tissue
,”
Bull. Math. Biol.
0092-8240,
40
, pp.
183
199
.
18.
Chen
,
M. M.
, and
Holmes
,
K. R.
, 1980, “
Microvascular Contributions in tissue heat transfer
,”
Ann. N. Y. Acad. Sci.
,
335
, pp.
137
150
. 0077-8923
19.
Weinbaum
,
S.
, and
Jiji
,
L. M.
, 1985, “
A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature
,”
ASME J. Biomech. Eng.
0148-0731,
107
, pp.
131
139
.
20.
Baish
,
J. W.
, 1994, “
Formulation of a Statistical Model of Heat Transfer in Perfused Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
521
527
.
21.
Shih
,
T. C.
,
Kou
,
H. S.
, and
Lin
,
W. L.
, 2002, “
Effect of Effective Tissue Conductivity on Thermal Dose Distributions of Living Tissue With Directional Blood Flow During Thermal Therapy
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
, pp.
115
126
.
22.
Kou
,
H. S.
,
Shih
,
T. C.
, and
Lin
,
W. L.
, 2003, “
Effect of the Directional Blood Flow on Thermal Dose Distribution During Thermal Therapy: An Application of a Green’s Function Based on the Porous Model
,”
Phys. Med. Biol.
0031-9155,
48
, pp.
1577
1589
.
23.
He
,
Q.
,
Zhu
,
L.
,
Lemons
,
D. E.
, and
Weinbaum
,
S.
, 2002, “
Experimental Measurements of the Temperature Variation Along Artery-Vein Pairs From 200 to 1000 Microns Diameter in Rat Hind Limb
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
656
661
.
24.
Crezee
,
J.
, and
Lagendijk
,
J. J.
, 1992, “
Temperature Uniformity During Hyperthermia: The Impact of Large Vessels
,”
Phys. Med. Biol.
0031-9155,
37
, pp.
1321
1337
.
25.
Kolios
,
M. C.
,
Sherar
,
M. D.
, and
Hunt
,
J. W.
, 1995, “
Large Blood Vessel Cooling in Heated Tissues: A Numerical Study
,”
Phys. Med. Biol.
0031-9155,
40
, pp.
477
494
.
26.
Blanchard
,
C. H.
,
Gutierrez
,
G.
,
White
,
J. A.
, and
Roemer
,
R. B.
, 2000, “
Hybrid Finite Element-Finite Difference Method for Thermal Analysis of Blood Vessels
,”
Int. J. Hyperthermia
0265-6736,
16
, pp.
341
353
.
27.
Shrivastava
,
D.
, and
Roemer
,
R. B.
, 2006, “
Readdressing the Issue of Thermally Significant Blood Vessels Using a Countercurrent Vessel Network
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
210
216
.
28.
Keller
,
K. H.
, and
Seiler
,
L.
, Jr.
, 1971, “
An Analysis of Peripheral Heat Transfer in Man
,”
J. Appl. Physiol.
0021-8987,
30
, pp.
779
786
.
29.
Roemer
,
R. B.
, and
Dutton
,
A. W.
, 1998, “
A Generic Tissue Convective Energy Balance Equation: Part I—Theory and Derivation
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
395
404
.
30.
De Lussanet
,
Q. G.
,
Van Golde
,
J. C.
,
Beets-Tan
,
R. G.
,
De Haan
,
M. W.
,
Zaar
,
D. V.
,
Post
,
M. J.
,
Huijberts
,
M. S.
,
Schaper
,
N. C.
,
Van Engelshoven
,
J. M.
, and
Backes
,
W. H.
, 2006, “
Magnetic Resonance Angiography of Collateral Vessel Growth in a Rabbit Femoral Artery Ligation Model
,”
NMR Biomed.
0952-3480,
19
, pp.
77
83
.
31.
Charny
,
C. K.
, 1992, “
Mathematical Models of Bioheat Transfer
,”
Adv. Heat Transfer
0065-2717,
22
, pp.
19
155
.
32.
Arkin
,
H.
,
Xu
,
L. X.
, and
Holmes
,
K. R.
, 1994, “
Recent Developments in Modeling Heat Transfer in Blood Perfused Tissues
,”
IEEE Trans. Biomed. Eng.
0018-9294,
41
, pp.
97
107
.
33.
Xuan
,
Y.
, and
Roetzel
,
W.
, 1997, “
Bioheat Equation for the Human Thermal System
,”
Chem. Eng. Technol.
0930-7516,
20
, pp.
268
276
.
34.
Roetzel
,
W.
, and
Xuan
,
Y.
, 1998, “
Transient Response of the Human Limb to an External Stimulus
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
229
239
.
35.
Khaled
,
A. R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
36.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 2008, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3190
3199
.
37.
Shrivastava
,
D.
, and
Roemer
,
R.
, 2004, “
An Analytical Derivation of Source Term Dependent, 2-D ‘Generalized Poisson Conduction Shape Factors’
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4293
4300
.
38.
Shrivastava
,
D.
, and
Roemer
,
R.
, 2005, “
An Analytical Study of Heat Transfer in a Finite Tissue Region With Two Blood Vessels and General Dirichlet Boundary Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4090
4102
.
39.
Shrivastava
,
D.
,
Roemer
,
R.
, and
Mckay
,
B.
, 2005, “
An Analytical Study of Heat Transfer in Finite Tissue With Two Blood Vessels and Uniform Dirichlet Boundary Conditions
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
179
188
.
40.
Shrivastava
,
D.
, and
Roemer
,
R. B.
, 2005, “
An Analytical Study of ‘Poisson Conduction Shape Factors’ for Two Thermally Significant Vessels in a Finite, Heated Tissue
,”
Phys. Med. Biol.
0031-9155,
50
, pp.
3627
3641
.
41.
Xu
,
L. X.
,
Holmes
,
K. R.
,
Moore
,
B.
,
Chen
,
M. M.
, and
Arkin
,
H.
, 1994, “
Microvascular Architecture Within the Pig Kidney Cortex
,”
Microvasc. Res.
0026-2862,
47
, pp.
293
307
.
42.
Chato
,
J. C.
, 1980, “
Heat Transfer to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
110
118
.
43.
Holmes
,
K. R.
, 1998,
Biotransport-Heat and Mass Transfer in Living Systems (Annals of the New York Academy of Sciences)
,
K. R.
Diller
, ed.,
ICHMT
,
Turkey
.
44.
Ibaraki
,
M.
,
Miura
,
S.
,
Shimosegawa
,
E.
,
Sugawara
,
S.
,
Mizuta
,
T.
,
Ishikawa
,
A.
, and
Amano
,
M.
, 2008, “
Quantification of Cerebral Blood Flow and Oxygen Metabolism With 3-Dimensional PET and 15O: Validation by Comparison With 2-Dimensional PET
,”
J. Nucl. Med.
0161-5505,
49
, pp.
50
59
.
45.
Knutsson
,
L.
,
Borjesson
,
S.
,
Larsson
,
E. M.
,
Risberg
,
J.
,
Gustafson
,
L.
,
Passant
,
U.
,
Stahlberg
,
F.
, and
Wirestam
,
R.
, 2007, “
Absolute Quantification of Cerebral Blood Flow in Normal Volunteers: Correlation Between Xe-133 SPECT and Dynamic Susceptibility Contrast MRI
,”
J. Magn. Reson Imaging
1053-1807,
26
, pp.
913
920
.
46.
Smith
,
A. M.
,
Grandin
,
C. B.
,
Duprez
,
T.
,
Mataigne
,
F.
, and
Cosnard
,
G.
, 2000, “
Whole Brain Quantitative CBF, CBV, and MTT Measurements Using MRI Bolus Tracking: Implementation and Application to Data Acquired From Hyperacute Stroke Patients
,”
J. Magn. Reson Imaging
1053-1807,
12
, pp.
400
410
.
47.
Forsberg
,
F.
,
Stein
,
A. D.
,
Liu
,
J. B.
,
Deng
,
X.
,
Ackerman
,
W.
,
Herzog
,
D.
,
Abend
,
K.
, and
Needleman
,
L.
, 2006, “
Validating Volume Flow Measurements From a Novel Semiautomated Four-Dimensional Doppler Ultrasound Scanner
,”
Acad. Radiol.
1076-6332,
13
, pp.
1204
1210
.
48.
Moros
,
E. G.
,
Dutton
,
A. W.
,
Roemer
,
R. B.
,
Burton
,
M.
, and
Hynynen
,
K.
, 1993, “
Experimental Evaluation of Two Simple Thermal Models Using Hyperthermia in Muscle In Vivo
,”
Int. J. Hyperthermia
0265-6736,
9
, pp.
581
598
.
49.
Kolios
,
M. C.
,
Worthington
,
A. E.
,
Sherar
,
M. D.
, and
Hunt
,
J. W.
, 1998, “
Experimental Evaluation of Two Simple Thermal Models Using Transient Temperature Analysis
,”
Phys. Med. Biol.
0031-9155,
43
, pp.
3325
3340
.
50.
Brinck
,
H.
, and
Werner
,
J.
, 1995, “
Use of Vascular and Non-Vascular Models for the Assessment of Temperature Distribution During Induced Hyperthermia
,”
Int. J. Hyperthermia
0265-6736,
11
, pp.
615
626
.
You do not currently have access to this content.