Oxygen is essential to maintaining normal brain function. A large body of evidence suggests that the partial pressure of oxygen (pO2) in brain tissue is physiologically maintained within a narrow range in accordance with region-specific brain activity. Since the transportation of oxygen in the brain tissue is mainly driven by a diffusion process caused by a concentration gradient of oxygen from blood to cells, the spatial organization of the vascular system, in which the oxygen content is higher than in tissue, is a key factor for maintaining effective transportation. In addition, a local mechanism that controls energy demand and blood flow supply plays a critical role in moment-to-moment adjustment of tissue pO2 in response to dynamically varying brain activity. In this review, we discuss the spatiotemporal structures of brain tissue oxygen transport in relation to local brain activity based on recent reports of tissue pO2 measurements with polarographic oxygen microsensors in combination with simultaneous recordings of neural activity and local cerebral blood flow in anesthetized animal models. Although a physiological mechanism of oxygen level sensing and control of oxygen transport remains largely unknown, theoretical models of oxygen transport are a powerful tool for better understanding the short-term and long-term effects of local changes in oxygen demand and supply. Finally, emerging new techniques for three-dimensional imaging of the spatiotemporal dynamics of pO2 map may enable us to provide a whole picture of how the physiological system controls the balance between demand and supply of oxygen during both normal and pathological brain activity.

1.
Rolfe
,
D. F.
, and
Brown
,
G. C.
, 1997, “
Cellular Energy Utilization and Molecular Origin of Standard Metabolic Rate in Mammals
,”
Physiol. Rev.
0031-9333,
77
, pp.
731
758
.
2.
Lin
,
C. S.
,
Polsky
,
K.
,
Nadler
,
J. V.
, and
Crain
,
B. J.
, 1990, “
Selective Neocortical and Thalamic Cell Death in the Gerbil After Transient Ischemia
,”
Neuroscience
0306-4522,
35
, pp.
289
299
.
3.
Cervos-Navarro
,
J.
, and
Diemer
,
N. H.
, 1991, “
Selective Vulnerability in Brain Hypoxia
,”
Crit. Rev. Neurobiol.
0892-0915,
6
, pp.
149
182
.
4.
Inoue
,
K.
,
Tomita
,
M.
,
Fukuuchi
,
Y.
,
Tanahashi
,
N.
,
Kobari
,
M.
,
Takao
,
M.
,
Takeda
,
H.
, and
Yokoyama
,
M.
, 2003, “
Dynamic Observation of Oxygenation-Induced Contraction of and Transient Fiber-Network Formation-Disassembly in Cultured Human Brain Microvascular Endothelial Cells
,”
J. Cereb. Blood Flow Metab.
0271-678X,
23
, pp.
821
828
.
5.
Gordon
,
G. R.
,
Choi
,
H. B.
,
Rungta
,
R. L.
,
Ellis-Davies
,
G. C.
, and
MacVicar
,
B. A.
, 2008, “
Brain Metabolism Dictates the Polarity of Astrocyte Control Over Arterioles
,”
Nature (London)
0028-0836,
456
, pp.
745
749
.
6.
Krogh
,
A.
, 1919, “
The Supply of Oxygen to the Tissues and the Regulation of the Capillary Circulation
,”
J. Physiol.
,
52
, pp.
457
474
. 0022-3751
7.
Ndubuizu
,
O.
, and
LaManna
,
J. C.
, 2007, “
Brain Tissue Oxygen Concentration Measurements
,”
Antioxid. Redox Signal.
,
9
, pp.
1207
1219
. 1523-0864
8.
Erecińska
,
M.
, and
Silver
,
I. A.
, 2001, “
Tissue Oxygen Tension and Brain Sensitivity to Hypoxia
,”
Respir. Physiol.
0034-5687,
128
, pp.
263
276
.
9.
Lübbers
,
D. W.
, and
Baumgärtl
,
H.
, 1997, “
Heterogeneities and Profiles of Oxygen Pressure in Brain and Kidney as Examples of the pO2 Distribution in the Living Tissue
,”
Kidney Int.
0085-2538,
51
, pp.
372
380
.
10.
Vanderkooi
,
J. M.
,
Erecińska
,
M.
, and
Silver
,
I. A.
, 1991, “
Oxygen in Mammalian Tissue: Methods of Measurement and Affinities of Various Reactions
,”
Am. J. Physiol.
0002-9513,
260
, pp.
C1131
C1150
.
11.
Dunn
,
J. F.
,
Rhodes
,
E. S.
, and
Panz
,
T.
, 1997, “
Heterogeneity of Brain Oxidative Metabolism and Hypoxia Response. Mammalian Systems and Nature's Solutions
,”
Adv. Exp. Med. Biol.
0065-2598,
428
, pp.
425
432
.
12.
Vovenko
,
E.
, 1999, “
Distribution of Oxygen Tension on the Surface of Arterioles, Capillaries and Venules of Brain Cortex and in Tissue in Normoxia: An Experimental Study on Rats
,”
Pflugers Arch.
,
437
, pp.
617
623
. 0031-6768
13.
Metzger
,
H.
, and
Heuber
,
S.
, 1977, “
Local Oxygen Tension and Spike Activity of the Cerebral Grey Matter of the Rat and Its Response to Short Intervals of O2 Deficiency or CO2 Excess
,”
Pflugers Arch.
,
370
, pp.
201
209
. 0031-6768
14.
Padnick
,
L. B.
,
Linsenmeier
,
R. A.
, and
Goldstick
,
T. K.
, 1999, “
Oxygenation of the Cat Primary Visual Cortex
,”
J. Appl. Physiol.
8750-7587,
86
, pp.
1490
1496
.
15.
Masamoto
,
K.
,
Takizawa
,
N.
,
Kobayashi
,
H.
,
Oka
,
K.
, and
Tanishita
,
K.
, 2003, “
Dual Responses of Tissue Partial Pressure of Oxygen After Functional Stimulation in Rat Somatosensory Cortex
,”
Brain Res.
0006-8993,
979
, pp.
104
113
.
16.
Masamoto
,
K.
,
Kurachi
,
T.
,
Takizawa
,
N.
,
Kobayashi
,
H.
, and
Tanishita
,
K.
, 2004, “
Successive Depth Variations in Microvascular Distribution of Rat Somatosensory Cortex
,”
Brain Res.
0006-8993,
995
, pp.
66
75
.
17.
Craigie
,
E. H.
, 1945, “
The Architecture of the Cerebral Capillary Bed
,”
Biol. Rev. Cambridge Philos. Soc.
0006-3231,
20
, pp.
133
146
.
18.
Nakai
,
K.
,
Imai
,
H.
,
Kamei
,
I.
,
Itakura
,
T.
,
Komari
,
N.
,
Kimura
,
H.
,
Nagai
,
T.
, and
Maeda
,
T.
, 1981, “
Microangioarchitecture of Rat Parietal Cortex With Special Reference to Vascular ‘Sphincters.’ Scanning Electron Microscopic and Dark Field Microscopic Study
,”
Stroke
0039-2499,
12
, pp.
653
659
.
19.
Patel
,
U.
, 1983, “
Non-Random Distribution of Blood Vessels in the Posterior Region of the Rat Somatosensory Cortex
,”
Brain Res.
0006-8993,
289
, pp.
65
70
.
20.
Wiederhold
,
K. H.
,
Bielser
,
W.
, Jr.
,
Schulz
,
U.
,
Veteau
,
M. J.
, and
Hunziker
,
O.
, 1976, “
Three-Dimensional Reconstruction of Brain Capillaries From Frozen Serial Sections
,”
Microvasc. Res.
0026-2862,
11
, pp.
175
180
.
21.
Zheng
,
D.
,
LaMantia
,
A. S.
, and
Purves
,
D.
, 1991, “
Specialized Vascularization of the Primate Visual Cortex
,”
J. Neurosci.
0270-6474,
11
, pp.
2622
2629
.
22.
Duvernoy
,
H. M.
, 1999, “
Blood Supply of the Cerebral Cortex
,”
The Human Brain Surface, Three-Dimensional Sectional Anatomy With MRI, and Blood Supply
,
Springer-Wien
,
New York
, pp.
431
458
.
23.
Reina-De La Torre
,
F.
,
Rodriguez-Baeza
,
A.
, and
Sahuquillo-Barris
,
J.
, 1998, “
Morphological Characteristics and Distribution Pattern of the Arterial Vessels in Human Cerebral Cortex: A Scanning Electron Microscope Study
,”
Anat. Rec.
0003-276X,
251
, pp.
87
96
.
24.
Metzger
,
H.
,
Heuber
,
S.
,
Steinacker
,
A.
, and
Struber
,
J.
, 1977, “
Staining of PO2 Measuring Points Demonstrated for the Rat Brain Cortex
,”
Adv. Exp. Med. Biol.
0065-2598,
94
, pp.
49
55
.
25.
Wree
,
A.
,
Zilles
,
K.
, and
Schleicher
,
A.
, 1990, “
Local Cerebral Glucose Utilization in the Neocortical Areas of the Rat Brain
,”
Anat. Embryol. (Berl)
0340-2061,
181
, pp.
603
614
.
26.
Ances
,
B. M.
,
Buerk
,
D. G.
,
Greenberg
,
J. H.
, and
Detre
,
J. A.
, 2001, “
Temporal Dynamics of the Partial Pressure of Brain Tissue Oxygen During Functional Forepaw Stimulation in Rats
,”
Neurosci. Lett.
0304-3940,
306
, pp.
106
110
.
27.
Thompson
,
J. K.
,
Peterson
,
M. R.
, and
Freeman
,
R. D.
, 2003, “
Single-Neuron Activity and Tissue Oxygenation in the Cerebral Cortex
,”
Science
0036-8075,
299
, pp.
1070
1072
.
28.
Masamoto
,
K.
,
Omura
,
T.
,
Takizawa
,
N.
,
Kobayashi
,
H.
,
Katura
,
T.
,
Maki
,
A.
,
Kawaguchi
,
H.
, and
Tanishita
,
K.
, 2003, “
Biphasic Changes in Tissue Partial Pressure of Oxygen Closely Related to Localized Neural Activity in Guinea Pig Auditory Cortex
,”
J. Cereb. Blood Flow Metab.
0271-678X,
23
(
9
), pp.
1075
1084
.
29.
Thompson
,
J. K.
,
Peterson
,
M. R.
, and
Freeman
,
R. D.
, 2005, “
Separate Spatial Scales Determine Neural Activity-Dependent Changes in Tissue Oxygen Within Central Visual Pathways
,”
J. Neurosci.
0270-6474,
25
, pp.
9046
9058
.
30.
Masamoto
,
K.
,
Kershaw
,
J.
,
Ureshi
,
M.
,
Takizawa
,
N.
,
Kobayashi
,
H.
,
Tanishita
,
K.
, and
Kanno
,
I.
, 2007, “
Apparent Diffusion Time of Oxygen From Blood to Tissue in Rat Cerebral Cortex: Implication for Tissue Oxygen Dynamics During Brain Functions
,”
J. Appl. Physiol.
8750-7587,
103
, pp.
1352
1358
.
31.
Lecoq
,
J.
,
Tiret
,
P.
,
Najac
,
M.
,
Shepherd
,
G. M.
,
Greer
,
C. A.
, and
Charpak
,
S.
, 2009, “
Odor-Evoked Oxygen Consumption by Action Potential and Synaptic Transmission in the Olfactory Bulb
,”
J. Neurosci.
0270-6474,
29
, pp.
1424
1433
.
32.
Vanzetta
,
I.
, and
Grinvald
,
A.
, 1999, “
Increased Cortical Oxidative Metabolism Due to Sensory Stimulation: Implications for Functional Brain Imaging
,”
Science
0036-8075,
286
, pp.
1555
1558
.
33.
Lindauer
,
U.
,
Royl
,
G.
,
Leithner
,
C.
,
Kuhl
,
M.
,
Gold
,
L.
,
Gethmann
,
J.
,
Kohl-Bareis
,
M.
,
Villringer
,
A.
, and
Dirnagl
,
U.
, 2001, “
No Evidence for Early Decrease in Blood Oxygenation in Rat Whisker Cortex in Response to Functional Activation
,”
Neuroimage
1053-8119,
13
, pp.
988
1001
.
34.
Fox
,
P. T.
, and
Raichle
,
M. E.
, 1986, “
Focal Physiological Uncoupling of Cerebral Blood Flow and Oxidative Metabolism During Somatosensory Stimulation in Human Subjects
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
83
, pp.
1140
1144
.
35.
Fox
,
P. T.
,
Raichle
,
M. E.
,
Mintun
,
M. A.
, and
Dence
,
C.
, 1988, “
Nonoxidative Glucose Consumption During Focal Physiologic Neural Activity
,”
Science
0036-8075,
241
, pp.
462
464
.
36.
Lewis
,
D. V.
, and
Schuette
,
W. H.
, 1976, “
NADH Fluorescence, [K+]0 and Oxygen Consumption in Cat Cerebral Cortex During Direct Cortical Stimulation
,”
Brain Res.
0006-8993,
110
, pp.
523
535
.
37.
Kasischke
,
K. A.
,
Vishwasrao
,
H. D.
,
Fisher
,
P. J.
,
Zipfel
,
W. R.
, and
Webb
,
W. W.
, 2004, “
Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis
,”
Science
0036-8075,
305
, pp.
99
103
.
38.
Foster
,
K. A.
,
Beaver
,
C. J.
, and
Turner
,
D. A.
, 2005, “
Interaction Between Tissue Oxygen Tension and NADH Imaging During Synaptic Stimulation and Hypoxia in Rat Hippocampal Slices
,”
Neuroscience
0306-4522,
132
, pp.
645
657
.
39.
Nair
,
P. K.
,
Buerk
,
D. G.
, and
Halsey
,
J. H.
, Jr.
, 1987, “
Comparisons of Oxygen Metabolism and Tissue PO2 in Cortex and Hippocampus of Gerbil Brain
,”
Stroke
0039-2499,
18
, pp.
616
622
.
40.
Buerk
,
D. G.
, and
Nair
,
P.
, 1993, “
PtiO2 and CMRO2 Changes in Cortex and Hippocampus of Aging Gerbil Brain
,”
J. Appl. Physiol.
8750-7587,
74
, pp.
1723
1728
.
41.
Davies
,
P. W.
, and
Grenell
,
R. G.
, 1962, “
Metabolism and Function in the Cerebral Cortex Under Local Perfusion, With the Aid of an Oxygen Cathode for Surface Measurement of Cortical Oxygen Consumption
,”
J. Neurophysiol.
0022-3077,
25
, pp.
651
683
.
42.
Lübbers
,
D. W.
, 1968, “
The Oxygen Pressure Field of the Brain and Its Significance for the Normal and Critical Oxygen Supply of the Brain
,”
Oxygen Transport in Blood and Tissue
,
D. W.
Lübbers
,
U. C.
Luft
,
G.
Thews
, and
E.
Witaleb
, eds.,
Georg Thieme Verlag
,
Stuttgart
, pp.
124
139
.
43.
Leniger-Follert
,
E.
, 1977, “
Direct Determination of Local Oxygen Consumption of the Brain Cortex In Vivo
,”
Pflugers Arch.
,
372
, pp.
175
179
. 0031-6768
44.
Nagaoka
,
T.
,
Zhao
,
F.
,
Wang
,
P.
,
Harel
,
N.
,
Kennan
,
R. P.
,
Ogawa
,
S.
, and
Kim
,
S. G.
, 2006, “
Increases in Oxygen Consumption Without Cerebral Blood Volume Change During Visual Stimulation Under Hypotension Condition
,”
J. Cereb. Blood Flow Metab.
0271-678X,
26
, pp.
1043
1051
.
45.
Fukuda
,
M.
,
Wang
,
P.
,
Moon
,
C. H.
,
Tanifuji
,
M.
, and
Kim
,
S. G.
, 2006, “
Spatial Specificity of the Enhanced Dip Inherently Induced by Prolonged Oxygen Consumption in Cat Visual Cortex: Implication for Columnar Resolution Functional MRI
,”
Neuroimage
1053-8119,
30
, pp.
70
87
.
46.
Masamoto
,
K.
,
Vazquez
,
A.
,
Wang
,
P.
, and
Kim
,
S. G.
, 2008, “
Trial-by-Trial Relationship Between Neural Activity, Oxygen Consumption, and Blood Flow Responses
,”
Neuroimage
1053-8119,
40
, pp.
442
450
.
47.
Travis
,
R. P.
, Jr.
, and
Clark
,
L. C.
, Jr.
, 1965, “
Changes in Evoked Brain Oxygen During Sensory Stimulation and Conditioning
,”
Electroencephalogr. Clin. Neurophysiol.
0013-4649,
19
, pp.
484
491
.
48.
Cooper
,
R.
,
Crow
,
H. J.
,
Walter
,
W. G.
, and
Winter
,
A. L.
, 1966, “
Regional Control of Cerebral Vascular Reactivity and Oxygen Supply in Man
,”
Brain Res.
0006-8993,
3
(
2
), pp.
174
191
.
49.
Gijsbers
,
K. J.
, and
Melzack
,
R.
, 1967, “
Oxygen Tension Changes Evoked in the Brain by Visual Stimulation
,”
Science
0036-8075,
156
, pp.
1392
1393
.
50.
Leniger-Follert
,
E.
, and
Lübbers
,
D. W.
, 1976, “
Behavior of Microflow and Local pO2 of the Brain Cortex During and After Direct Electrical Stimulation. A Contribution to the Problem of Metabolic Regulation of Microcirculation in the Brain
,”
Pflugers Arch.
,
366
, pp.
39
44
. 0031-6768
51.
Silver
,
I. A.
, 1978, “
Cellular Microenvironment in Relation to Local Blood Flow
,”
Ciba Found Symp.
0300-5208,
56
, pp.
49
67
.
52.
Lowry
,
J. P.
,
Boutelle
,
M. G.
, and
Fillenz
,
M.
, 1997, “
Measurement of Brain Tissue Oxygen at a Carbon Past Electrode Can Serve as an Index of Increases in Regional Cerebral Blood Flow
,”
J. Neurosci. Methods
0165-0270,
71
(
2
), pp.
177
182
.
53.
Offenhauser
,
N.
,
Thomsen
,
K.
,
Caesar
,
K.
, and
Lauritzen
,
M.
, 2005, “
Activity-Induced Tissue Oxygenation Changes in Rat Cerebellar Cortex: Interplay of Postsynaptic Activation and Blood Flow
,”
J. Physiol.
,
565
, pp.
279
294
. 0022-3751
54.
Caesar
,
K.
,
Offenhauser
,
N.
, and
Lauritzen
,
M.
, 2008, “
Gamma-Aminobutyric Acid Modulates Local Brain Oxygen Consumption and Blood Flow in Rat Cerebellar Cortex
,”
J. Cereb. Blood Flow Metab.
0271-678X,
28
, pp.
906
915
.
55.
Enager
,
P.
,
Piilgaard
,
H.
,
Offenhauser
,
N.
,
Kocharyan
,
A.
,
Fernandes
,
P.
,
Hamel
,
E.
, and
Lauritzen
,
M.
, 2009, “
Pathway-Specific Variations in Neurovascular and Neurometabolic Coupling in Rat Primary Somatosensory Cortex
,”
J. Cereb. Blood Flow Metab.
0271-678X,
29
, pp.
976
986
.
56.
Buchweitz
,
E.
,
Sinha
,
A. K.
, and
Weiss
,
H. R.
, 1980, “
Cerebral Regional Oxygen Consumption and Supply in Anesthetized Cat
,”
Science
0036-8075,
209
, pp.
499
501
.
57.
Kassissia
,
I. G.
,
Goresky
,
C. A.
,
Rose
,
C. P.
,
Schwab
,
A. J.
,
Simard
,
A.
,
Huet
,
P. M.
, and
Bach
,
G. G.
, 1995, “
Tracer Oxygen Distribution is Barrier-Limited in the Cerebral Microcirculation
,”
Circ. Res.
0009-7330,
77
, pp.
1201
1211
.
58.
Hermán
,
P.
,
Trübel
,
H. K.
, and
Hyder
,
F.
, 2006, “
A Multiparametric Assessment of Oxygen Efflux From the Brain
,”
J. Cereb. Blood Flow Metab.
0271-678X,
26
, pp.
79
91
.
59.
Masamoto
,
K.
,
Vazquez
,
A.
,
Wang
,
P.
, and
Kim
,
S. G.
, 2009, “
Brain Tissue Oxygen Consumption and Supply Induced by Neural Activation: Determined Under Suppressed Hemodynamic Response Conditions in the Anesthetized Rat Cerebral Cortex
,”
Adv. Exp. Med. Biol.
0065-2598,
645
, pp.
287
292
.
60.
Siesjö
,
B. K.
, 1978, “
Brain Energy Metabolism and Catecholaminergic Activity in Hypoxia, Hypercapnia and Ischemia
,”
J. Neural Transm., Suppl.
0303-6995,
14
, pp.
17
22
.
61.
Springett
,
R.
,
Wylezinska
,
M.
,
Cady
,
E. B.
,
Cope
,
M.
, and
Delpy
,
D. T.
, 2000, “
Oxygen Dependency of Cerebral Oxidative Phosphorylation in Newborn Piglets
,”
J. Cereb. Blood Flow Metab.
0271-678X,
20
(
2
), pp.
280
289
.
62.
Hudetz
,
A. G.
, 1999, “
Mathematical Model of Oxygen Transport in the Cerebral Cortex
,”
Brain Res.
0006-8993,
817
, pp.
75
83
.
63.
Secomb
,
T. W.
,
Hsu
,
R.
,
Beamer
,
N. B.
, and
Coull
,
B. M.
, 2000, “
Theoretical Simulation of Oxygen Transport to Brain by Networks of Microvessels: Effects of Oxygen Supply and Demand on Tissue Hypoxia
,”
Microcirculation
,
7
, pp.
237
247
. 1073-9688
64.
Buxton
,
R. B.
, and
Frank
,
L. R.
, 1997, “
A Model for the Coupling Between Cerebral Blood Flow and Oxygen Metabolism During Neural Stimulation
,”
J. Cereb. Blood Flow Metab.
0271-678X,
17
(
1
), pp.
64
72
.
65.
Mintun
,
M. A.
,
Lundstrom
,
B. N.
,
Snyder
,
A. Z.
,
Vlassenko
,
A. G.
,
Shulman
,
G. L.
, and
Raichle
,
M. E.
, 2001, “
Blood Flow and Oxygen Delivery to Human Brain During Functional Activity: Theoretical Modeling and Experimental Data
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
(
12
), pp.
6859
6864
.
66.
Valabrègue
,
R.
,
Aubert
,
A.
,
Burger
,
J.
,
Bittoun
,
J.
, and
Costalat
,
R.
, 2003, “
Relation Between Cerebral Blood Flow and Metabolism Explained by a Model of Oxygen Exchange
,”
J. Cereb. Blood Flow Metab.
0271-678X,
23
, pp.
536
545
.
67.
Vazquez
,
A. L.
,
Masamoto
,
K.
, and
Kim
,
S. G.
, 2008, “
Dynamics of Oxygen Delivery and Consumption During Evoked Neural Stimulation Using a Compartment Model and CBF and Tissue P(O2) Measurements
,”
Neuroimage
1053-8119,
42
(
1
), pp.
49
59
.
68.
Hyder
,
F.
,
Shulman
,
R. G.
, and
Rothman
,
D. L.
, 1998, “
A Model for the Regulation of Cerebral Oxygen Delivery
,”
J. Appl. Physiol.
8750-7587,
85
(
2
), pp.
554
564
.
69.
Gjedde
,
A.
,
Poulsen
,
P. H.
, and
Ostergaard
,
L.
, 1999, “
On the Oxygenation of Hemoglobin in the Human Brain
,”
Adv. Exp. Med. Biol.
0065-2598,
471
, pp.
67
81
.
70.
Hyder
,
F.
,
Kennan
,
R. P.
,
Kida
,
I.
,
Mason
,
G. F.
,
Behar
,
K. L.
, and
Rothman
,
D.
, 2000, “
Dependence of Oxygen Delivery on Blood Flow in Rat Brain: A 7 Tesla Nuclear Magnetic Resonance Study
,”
J. Cereb. Blood Flow Metab.
0271-678X,
20
(
3
), pp.
485
498
.
71.
Vafaee
,
M. S.
, and
Gjedde
,
A.
, 2000, “
Model of Blood-Brain Transfer of Oxygen Explains Nonlinear Flow-Metabolism Coupling During Stimulation of Visual Cortex
,”
J. Cereb. Blood Flow Metab.
0271-678X,
20
(
4
), pp.
747
754
.
72.
Hayashi
,
T.
,
Watabe
,
H.
,
Kudomi
,
N.
,
Kim
,
K. M.
,
Enmi
,
J.
,
Hayashida
,
K.
, and
Iida
,
H.
, 2003, “
A Theoretical Model of Oxygen Delivery and Metabolism for Physiologic Interpretation of Quantitative Cerebral Blood Flow and Metabolic Rate of Oxygen
,”
J. Cereb. Blood Flow Metab.
0271-678X,
23
(
11
), pp.
1314
1323
.
73.
Hyder
,
F.
,
Kida
,
I.
,
Behar
,
K. L.
,
Kennan
,
R. P.
, and
Rothman
,
D. L.
, 2003, “
Dominant Events that Modulate Mass Transfer Coefficient of Oxygen in Cerebral Cortex
,”
Adv. Exp. Med. Biol.
0065-2598,
530
, pp.
401
411
.
74.
Mayhew
,
J.
,
Johnston
,
D.
,
Martindale
,
J.
,
Jones
,
M.
,
Berwick
,
J.
, and
Zheng
,
Y.
, 2001, “
Increased Oxygen Consumption Following Activation of Brain: Theoretical Footnotes Using Spectroscopic Data From Barrel Cortex
,”
Neuroimage
1053-8119,
13
, pp.
975
987
.
75.
Zheng
,
Y.
,
Martindale
,
J.
,
Johnston
,
D.
,
Jones
,
M.
,
Berwick
,
J.
, and
Mayhew
,
J.
, 2002, “
A Model of the Hemodynamic Response and Oxygen Delivery to Brain
,”
Neuroimage
1053-8119,
16
, pp.
617
637
.
76.
Tanishita
,
K.
,
Masamoto
,
K.
,
Negishi
,
T.
,
Takizawa
,
N.
, and
Kobayashi
,
H.
, 2005, “
Oxygen Transport in the Microvessel Network
,”
Organ Microcirculation
,
13
(
1
), pp.
13
20
.
77.
Zheng
,
Y.
,
Johnston
,
D.
,
Berwick
,
J.
,
Chen
,
D.
,
Billings
,
S.
, and
Mayhew
,
J.
, 2005, “
A Three-Compartment Model of the Hemodynamic Response and Oxygen Delivery to Brain
,”
Neuroimage
1053-8119,
28
(
4
), pp.
925
939
.
78.
Huppert
,
T. J.
,
Allen
,
M. S.
,
Benav
,
H.
,
Jones
,
P. B.
, and
Boas
,
D. A.
, 2007, “
A Multicompartment Vascular Model for Inferring Baseline and Functional Changes in Cerebral Oxygen Metabolism and Arterial Dilation
,”
J. Cereb. Blood Flow Metab.
0271-678X,
27
(
6
), pp.
1262
1279
.
79.
Shibuki
,
K.
,
Hishida
,
R.
,
Murakami
,
H.
,
Kudoh
,
M.
,
Kawaguchi
,
T.
,
Watanabe
,
M.
,
Watanabe
,
S.
,
Kouuchi
,
T.
, and
Tanaka
,
R.
, 2003, “
Dynamic Imaging of Somatosensory Cortical Activity in the Rat Visualized by Flavoprotein Autofluorescence
,”
J. Physiol.
,
549
(
3
), pp.
919
927
. 0022-3751
80.
Weber
,
B.
,
Burger
,
C.
,
Wyss
,
M. T.
,
von Schulthess
,
G. K.
,
Scheffold
,
F.
, and
Buck
,
A.
, 2004, “
Optical Imaging of the Spatiotemporal Dynamics of Cerebral Blood Flow and Oxidative Metabolism in the Rat Barrel Cortex
,”
Eur. J. Neurosci.
0953-816X,
20
(
10
), pp.
2664
2670
.
81.
Reinert
,
K. C.
,
Dunbar
,
R. L.
,
Gao
,
W.
,
Chen
,
G.
, and
Ebner
,
T. J.
, 2004, “
Flavoprotein Autofluorescence Imaging of Neuronal Activation in the Cerebellar Cortex In Vivo
,”
J. Neurophysiol.
0022-3077,
92
(
1
), pp.
199
211
.
82.
Husson
,
T. R.
,
Mallik
,
A. K.
,
Zhang
,
J. X.
, and
Issa
,
N. P.
, 2007, “
Functional Imaging of Primary Visual Cortex Using Flavoprotein Autofluorescence
,”
J. Neurosci.
0270-6474,
27
(
32
), pp.
8665
8675
.
83.
Mik
,
E. G.
,
van Leeuwen
,
T. G.
,
Raat
,
N. J.
, and
Ince
,
C.
, 2004, “
Quantitative Determination of Localized Tissue Oxygen Concentration In Vivo by Two-Photon Excitation Phosphorescence Lifetime Measurements
,”
J. Appl. Physiol.
8750-7587,
97
(
5
), pp.
1962
1969
.
84.
Finikova
,
O. S.
,
Lebedev
,
A. Y.
,
Aprelev
,
A.
,
Troxler
,
T.
,
Gao
,
F.
,
Garnacho
,
C.
,
Muro
,
S.
,
Hochstrasser
,
R. M.
, and
Vinogradov
,
S. A.
, 2008, “
Oxygen Microscopy by Two-Photon-Excited Phosphorescence
,”
ChemPhysChem
1439-4235,
9
(
12
), pp.
1673
1679
.
85.
Dunphy
,
I.
,
Vinogradov
,
S. A.
, and
Wilson
,
D. F.
, 2002, “
Oxyphor R2 and G2: Phosphors for Measuring Oxygen by Oxygen-Dependent Quenching of Phosphorescence
,”
Anal. Biochem.
0003-2697,
310
(
2
), pp.
191
198
.
86.
Jorge
,
P. A.
,
Mayeh
,
M.
,
Benrashid
,
R.
,
Caldas
,
P.
,
Santos
,
J. L.
, and
Farahi
,
F.
, 2006, “
Applications of Quantum Dots in Optical Fiber Luminescent Oxygen Sensors
,”
Appl. Opt.
0003-6935,
45
(
16
), pp.
3760
3767
.
87.
Kodibagkar
,
V. D.
,
Wang
,
X.
, and
Mason
,
R. P.
, 2008, “
Physical Principles of Quantitative Nuclear Magnetic Resonance Oximetry
,”
Front. Biosci.
1093-4715,
13
, pp.
1371
1384
.
You do not currently have access to this content.