Vacuum-assisted closure® (VAC®) therapy, also referred to as vacuum-assisted closure® negative pressure wound therapy (VAC® NPWT), delivered to various dermal wounds is believed to influence the formation of granulation tissue via the mechanism of microdeformational signals. In recent years, numerous experimental investigations have been initiated to study the cause-effect relationships between the mechanical signals and the transduction pathways that result in improved granulation response. To accurately quantify the tissue microdeformations during therapy, a new three-dimensional finite element model has been developed and is described in this paper. This model is used to study the effect of dressing type and subatmospheric pressure level on the variations in the microdeformational strain fields in a model dermal wound bed. Three-dimensional geometric models representing typical control volumes of NPWT dressings were generated using micro-CT scanning of VAC® GranuFoam®, a reticulated open-cell polyurethane foam (ROCF), and a gauze dressing (constructed from USP Class VII gauze). Using a nonlinear hyperfoam constitutive model for the wound bed, simulated tissue microdeformations were generated using the foam and gauze dressing models at equivalent negative pressures. The model results showed that foam produces significantly greater strain than gauze in the tissue model at all pressures and in all metrics (p<0.0001 for all but εvol at 50mmHg and 100mmHg where p<0.05). Specifically, it was demonstrated in this current work that the ROCF dressing produces higher levels of tissue microdeformation than gauze at all levels of subatmospheric pressure. This observation is consistent across all of the strain invariants assessed, i.e., εvol, εdist, the minimum and maximum principal strains, and the maximum shear strain. The distribution of the microdeformations and strain appears as a repeating mosaic beneath the foam dressing, whereas the gauze dressings appear to produce an irregular distribution of strains in the wound surface. Strain predictions from the developed computational model results agree well with those predicted from prior two-dimensional experimental and computational studies of foam-based NPWT (Saxena, V., et al., 2004, “Vacuum-assisted closure: Microdeformations of Wounds and Cell Proliferation,” Plast. Reconstr. Surg., 114(5), pp. 1086–1096). In conjunction with experimental in vitro and in vivo studies, the developed model can now be extended into more detailed investigations into the mechanobiological underpinnings of VAC® NPWT and can help to further develop and optimize this treatment modality for the treatment of challenging patient wounds.

1.
Argenta
,
L. C.
, and
Marks
,
M. W.
, 1990,
Tissue Expansion
,
N.
Georgiade
, ed.,
Lippincott
,
Baltimore
, pp.
103
113
.
2.
Argenta
,
L. C.
, and
Morykwas
,
M. J.
, 1997, “
Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience
,”
Ann. Plast. Surg.
0148-7043,
38
(
6
), pp.
563
576
.
3.
Ford
,
C. N.
,
Reinhard
,
E. R.
,
Yeh
,
D.
,
Syrek
,
D.
,
DeLas
,
M. A.
,
Bergman
,
S. B.
,
Williams
,
S.
, and
Hamori
,
C. A.
, 2002, “
Interim Analysis of a Prospective, Randomized Trial of Vacuum-Assisted Closure Versus the Health Point System in the Management of Pressure Ulcers
,”
Ann. Plast. Surg.
0148-7043,
49
(
1
), pp.
55
61
.
4.
Eginton
,
M. T.
,
Brown
,
K. R.
,
Seabrook
,
G. R.
,
Towne
,
J. B.
, and
Cambria
,
R. A.
, 2003, “
A Prospective Randomized Evaluation of Negative-Pressure Wound Dressings for Diabetic Foot Wounds
,”
Ann. Vasc. Surg.
0890-5096,
17
(
6
), pp.
645
649
.
5.
Joseph
,
E.
,
Hamori
,
C. A.
,
Bergman
,
S.
,
Roaf
,
E.
,
Swann
,
N. F.
, and
Anastasi
,
G. W.
, 2000, “
A Prospective, Randomized Trial of Vacuum-Assisted Closure Versus Standard Therapy of Chronic Nonhealing Wounds
,”
Wounds
,
12
(
3
), pp.
60
67
.
6.
Armstrong
,
D. G.
, and
Lavery
,
L. A.
, 2005, “
Negative Pressure Wound Therapy After Partial Diabetic Foot Amputation: A Multicentre, Randomised Controlled Trial
,”
Lancet
0140-6736,
366
(
9498
), pp.
1704
1710
.
7.
Harrington
,
C.
,
Zagari
,
M. J.
,
Corea
,
J.
, and
Klitenic
,
J.
, 2000, “
A Cost Analysis of Diabetic Lower-Extremity Ulcers
,”
Diabetes Care
0149-5992,
23
(
9
), pp.
1333
1338
.
8.
McCallon
,
S. K.
,
Knight
,
C. A.
,
Valiulus
,
J. P.
,
Cunningham
,
M. W.
,
McCulloch
,
J. M.
, and
Farinas
,
L. P.
, 2000, “
Vacuum-Assisted Closure Versus Saline-Moistened Gauze in the Healing of Postoperative Diabetic Foot Wounds
,”
Ostomy Wound Manage
0889-5899,
46
(
8
), pp.
28
34
.
9.
Armstrong
,
D. G.
,
Lavery
,
L. A.
,
Abu-Rumman
,
P.
,
Espensen
,
E. H.
,
Vazquez
,
J. R.
,
Nixon
,
B. P.
, and
Boulton
,
A. J. M.
, 2002, “
Outcomes of Subatmospheric Pressure Dressing Therapy on Wounds of the Diabetic Foot
,”
Ostomy Wound Manage
0889-5899,
48
(
4
), pp.
64
68
.
10.
Morykwas
,
M. J.
,
Argenta
,
L. C.
,
Shelton-Brown
,
E. I.
, and
McGuirt
,
W.
, 1997, “
Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation
,”
Curr. Opin. Oncol.
1040-8746,
38
(
6
), pp.
553
562
.
11.
Morykwas
,
M.
,
Schneider
,
A.
,
Argenta
,
L.
,
Fowler
,
J.
, and
McHone
,
J.
, 1996, “
Effect of V.A.C. Therapy on Total Change and Length of Stay of Patients in Drg 263: A 21Month Analysis
,” presented at the 28th Annual Conference of the Wound, Ostomy and Continence Nurses Society,
Seattle, WA
, Jun. 15–19.
12.
Saxena
,
V.
,
Hwang
,
C. W.
,
Huang
,
S.
,
Eichbaum
,
Q.
,
Ingber
,
D.
, and
Orgill
,
D. P.
, 2004, “
Vacuum-Assisted Closure: Microdeformations of Wounds and Cell Proliferation
,”
Plast. Reconstr. Surg.
0032-1052,
114
(
5
), pp.
1086
1096
.
13.
Smith
,
A. P. S.
,
Kieswetter
,
K.
,
Goodwin
,
A. L.
, and
McNulty
,
A.
, 2007,
Negative Pressure Wound Therapy
,
D. L.
Krasner
,
G.
Rodeheaver
, and
R. G.
Sibbald
, eds.,
HMP Communications
,
Malvern
, pp.
271
286
.
14.
Wackenfors
,
A.
,
Sjogren
,
J.
,
Gustafsson
,
R.
,
Algotsson
,
L.
,
Ingemansson
,
R.
, and
Malmsjo
,
M.
, 2004, “
Effects of Vacuum-Assisted Closure Therapy on Inguinal Wound Edge Microvascular Blood Flow
,”
Wound Repair Regen
1067-1927,
12
(
6
), pp.
600
606
.
15.
Wackenfors
,
A.
,
Gustafsson
,
R.
,
Sjogren
,
J.
,
Algotsson
,
L.
,
Ingemansson
,
R.
, and
Malmsjo
,
M.
, 2005, “
Blood Flow Responses in the Peristernal Thoracic Wall During Vacuum-Assisted Closure Therapy
,”
Ann. Thorac. Surg.
0003-4975,
79
(
5
), pp.
1724
1731
.
16.
Norbury
,
K.
, and
Kieswetter
,
K.
, 2007, “
Vacuum-Assisted Closure Therapy Attenuates the Inflammatory Response in a Porcine Acute Wound Healing Model
,”
Wounds
,
19
(
4
), pp.
97
106
.
17.
Timmers
,
M. S.
,
Le
,
C. S.
,
Banwell
,
P.
, and
Jukema
,
G. N.
, 2005, “
The Effects of Varying Degrees of Pressure Delivered by Negative-Pressure Wound Therapy on Skin Perfusion
,”
Ann. Plast. Surg.
0148-7043,
55
(
6
), pp.
665
671
.
18.
Greene
,
A. K.
,
Puder
,
M.
,
Roy
,
R.
,
Arsenault
,
D.
,
Kwei
,
S.
,
Moses
,
M. A.
, and
Orgill
,
D. P.
, 2006, “
Microdeformational Wound Therapy: Effects on Angiogenesis and Matrix Metalloproteinases in Chronic Wounds of 3 Debilitated Patients
,”
Ann. Plast. Surg.
0148-7043,
56
(
4
), pp.
418
422
.
19.
Oomens
,
C. W. J.
, 1985, “
A Mixture Approach to the Mechanics of Skin and Subcutis
,” Ph.D. thesis, University of Twente, The Netherlands.
20.
Fung
,
Y. C.
, 2005,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer
,
New York
.
21.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
, 2006,
Mechanics of Biological Tissue
, 1st ed.,
Springer
,
New York
.
22.
Folkman
,
J.
, and
Moscona
,
A.
, 1978, “
Role of Cell Shape in Growth Control
,”
Nature (London)
0028-0836,
273
,(
5661
), pp.
345
349
.
23.
Hinz
,
B.
,
Mastrangelo
,
D.
,
Iselin
,
C. E.
,
Chaponnier
,
C.
, and
Gabbiani
,
G.
, 2001, “
Mechanical Tension Controls Granulation Tissue Contractile Activity and Myofibroblast Differentiation
,”
Am. J. Pathol.
0002-9440,
159
(
3
), pp.
1009
1020
.
24.
Ingber
,
D. E.
, and
Folkman
,
J.
, 1989, “
Tension and Compression as Basic Determinants of Cell Form and Function.
,”
W. D.
Stein
and
F.
Bronner
, eds.
Academic
,
New York
, pp.
3
31
.
25.
Ingber
,
D. E.
, 1990, “
Fibronectin Controls Capillary Endothelial Cell Growth by Modulating Cell Shape.
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
87
(
9
), pp.
3579
3583
.
26.
2004, “
Absorbent Gauze
,” Monograph, United States Pharmacopeia, p.
856
.
27.
Hilyard
,
N. C.
, and
Cunningham
,
A.
, 1994,
Low Density Cellular Plastics: Physical Basis of Behaviour
Chapman and Hall
,
London
.
28.
Simon
,
B. R.
, 1992, “
Multiphase Poroelastic Finite Element Models for Soft Tissue Structures
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
191
218
.
29.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1990, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
0021-9290,
23
(
2
), pp.
145
155
.
30.
Oomens
,
C. W.
,
Bressers
,
O. F.
,
Bosboom
,
E. M.
, and
Bouten
,
C. V.
, 2001, “
Deformation Analysis of a Supported Buttock Contact
,”
Proceedings of the 2001 Bioengineering Conference
American Society of Mechanical Engineers
,
Snowbird, UT
, Jun. 27–Jul. 1, Vol.
50
, pp.
853
854
.
31.
Levinson
,
H.
,
Liu
,
W.
,
Oswari
,
J.
,
Peled
,
Z.
,
Hsu
,
M.
,
Longaker
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Extracellular Matrix and Seeding Density Affect Cell Response to Mechanical Strain
,”
Journal of Burns & Surgical Wound Care
,
1
(
1
), p.
16
.
32.
Huang
,
S.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
, 1998, “
Control of Cyclin D1, p27 (kip1), and Cell Cycle Progression in Human Capillary Endothelial Cells by Cell Shape and Cytoskeletal Tension
,”
Mol. Biol. Cell
1059-1524,
9
(
11
), pp.
3179
3193
.
33.
Huang
,
S.
, and
Ingber
,
D. E.
, 1999, “
The Structural and Mechanical Complexity of Cell-Growth Control
,”
Nat. Cell Biol.
1465-7392,
1
(
5
), pp.
E131
E138
.
34.
Chen
,
C. S.
,
Mrksich
,
M.
,
Huang
,
S.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
, 1997, “
Geometric Control of Cell Life and Death
,”
Science
0036-8075,
276
(
5317
), pp.
1425
1428
.
35.
Korff
,
T.
, and
Augustin
,
H. G.
, 1999, “
Tensional Forces in Fibrillar Extracellular Matrices Control Directional Capillary Sprouting
,”
J. Cell. Sci.
0021-9533,
112
(
19
), pp.
3249
3258
.
36.
Nagel
,
T.
,
Resnick
,
N.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1999, “
Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
19
(
8
), pp.
1825
1834
.
37.
Shiu
,
Y. T.
,
Weiss
,
J. A.
,
Hoying
,
J. B.
,
Iwamoto
,
M. N.
,
Joung
,
I. S.
, and
Quam
,
C. T.
, 2005, “
The Role of Mechanical Stresses in Angiogenesis
,”
Crit. Rev. Biomed. Eng.
0278-940X,
33
(
5
), pp.
431
510
.
38.
Ingber
,
D. E.
,
Prusty
,
D.
,
Sun
,
Z.
,
Betensky
,
H.
, and
Wang
,
N.
, 1995, “
Cell Shape, Cytoskeletal Mechanics, and Cell Cycle Control in Angiogenesis
,”
J. Biomech.
0021-9290,
28
(
12
), pp.
1471
1484
.
39.
Ingber
,
D. E.
, 1997, “
Tensegrity: The Architectural Basis of Cellular Mechanotransduction
,”
Annu. Rev. Physiol.
0066-4278,
59
, pp.
575
599
.
40.
Ingber
,
D.
, 1991, “
Extracellular Matrix and Cell Shape: Potential Control Points for Inhibition of Angiogenesis
,”
J. Cell. Biochem.
0730-2312,
47
(
3
), pp.
236
241
.
41.
Ingber
,
D.
, 1991, “
Integrins as Mechanochemical Transducers
,”
Curr. Opin. Cell Biol.
0955-0674,
3
(
5
), pp.
841
848
.
42.
Wilkes
,
R. P.
,
McNulty
,
A. K.
,
Feeley
,
T. D.
,
Schmidt
,
M. A.
, and
Kieswetter
,
K.
, 2007, “
Bioreactor for Application of Subatmospheric Pressure to Three-Dimensional Cell Culture
,”
Tissue Eng.
1076-3279,
13
(
12
), pp.
3003
3010
.
43.
McNulty
,
A.
,
Schmidt
,
M.
,
Feeley
,
T.
, and
Kieswetter
,
K.
, 2007, “
Comparison of Cell Energetics Between Cells Experiencing Negative Pressure Manifolded With V.A.C. Granufoam Dressing vs. Gauze
,”
Wound Repair Regen
1067-1927,
15
(
2
), p.
A41
.
44.
McNulty
,
A.
,
Schmidt
,
M.
,
Feeley
,
T.
, and
Kieswetter
,
K.
, 2007, “
Comparison of Cell Vitality and Chemokine Production Between Cells Experiencing Negative Pressure Manifolded With Different Dressings
,”
Wound Repair Regen
1067-1927,
15
(
2
), p.
A41
.
45.
McNulty
,
A. K.
,
Schmidt
,
M.
,
Feeley
,
T.
, and
Kieswetter
,
K.
, 2007, “
Effects of Negative Pressure Wound Therapy on Fibroblast Viability, Chemotactic Signaling, and Proliferation in a Provisional Wound (Fibrin) Matrix
,”
Wound Repair Regen
1067-1927,
15
(
6
), pp.
838
846
.
46.
Norbury
,
K.
,
Bassam
,
D.
, and
Kieswetter
,
K.
, 2006, “
Immunological Effects of Subatmospheric Tissue Treatment on Cutaneious Wounds in Swine
,”
Presented at the Clinical Symposium on Advances in Skin and Wound Care
,
Lake Buena Vista
,
FL
, Sept. 28–Oct. 1, p.
419
.
47.
Norbury
,
K.
,
Jenschke
,
C.
, and
Kieswetter
,
K.
, 2006, “
Subatmospheric Pressure Treatment Using Polyurethane Foam Dressings Induces Angiogenesis in Porcine Wounds
,”
Wound Repair Regen
1067-1927,
14
(
2
), p.
A76
.
48.
Norbury
,
K.
,
Ness-Piacente
,
M.
,
Damaj
,
B.
, and
Kieswetter
,
K.
, 2005, “
Systemic Effect Of Vacuum Assisted Closure (V.A.C.) Therapy in Porcine Full Thickness Acute Wounds Presented at the 15th Annual Meeting of the Wound Healing Society, 18–21 May 2005, Chicago, IL
,”
Wound Repair Regen
1067-1927,
13
(
2
), p.
A44
.
49.
See EPAPS Document No. E-JBENDY-130-011804 for 3D animations of the foam and gauze surface models and FEM results. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.htmlhttp://www.aip.org/pubservs/epaps.html.
You do not currently have access to this content.