The urinary bladder wall (UBW), which is composed of smooth muscle, collagen, and elastin, undergoes profound remodeling in response to changes in mechanical loading resulting from various pathologies. In our laboratory, we have observed the production of fibrillar elastin in the extracellular matrix (ECM), which makes the UBW a particularly attractive tissue to investigate smooth muscle tissue remodeling. In the present study, we explored the mechanical role that de novo elastin fibers play in altering UBW ECM mechanical behavior using a structural constitutive modeling approach. The mechanical behavior of the collagen fiber component of the UBW ECM was determined from the biaxial stress-stretch response of normal UBW ECM, based on bimodal fiber recruitment that was motivated by the UBW’s unique collagen fiber structure. The resulting fiber ensemble model was then combined with an experimentally derived fiber angular distribution to predict the biaxial mechanical behavior of normal and the elastin-rich UBW ECM to elucidate the underlying mechanisms of elastin production. Results indicated that UBW ECM exhibited a distinct structure with highly coiled collagen fiber bundles and visible elastic fibers in the pathological situation. Elastin-rich UBW ECM had a distinct mechanical behavior with higher compliance, attributable to the indirect effect of elastin fibers contracting the collagen fiber network, resulting in a retracted unloaded reference state of the tissue. In conclusion, our results suggest that the urinary bladder responds to prolonged periods of high strain by increasing its effective compliance through the interaction between collagen and de novo synthesized elastic fibers.

1.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2002, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
, pp.
407
430
.
2.
Taber
,
L. A.
, 1995, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
487
545
.
3.
Baek
,
S.
,
Valentin
,
A.
, and
Humphrey
,
J. D.
, 2007, “
Biochemomechanics of Cerebral Vasospasm and Its Resolution: II. Constitutive Relations and Model Simulations
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
1498
1509
.
4.
Gleason
,
R. L.
, Jr.
, and
Humphrey
,
J. D.
, 2005, “
A 2D Constrained Mixture Model for Arterial Adaptations to Large Changes in Flow, Pressure and Axial Stretch
,”
IMA J. Math. Appl. Med. Biol.
0265-0746,
22
, pp.
347
369
.
5.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2003, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
1617-7959,
2
, pp.
109
126
.
6.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
, 2008, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
245
262
.
7.
Hu
,
J. J.
,
Ambrus
,
A.
,
Fossum
,
T. W.
,
Miller
,
M. W.
,
Humphrey
,
J. D.
, and
Wilson
,
E.
, 2008, “
Time Courses of Growth and Remodeling of Porcine Aortic Media During Hypertension: A Quantitative Immunohistochemical Examination
,”
J. Histochem. Cytochem.
0022-1554,
56
, pp.
359
370
.
8.
Gundiah
,
N.
,
Ratcliffe
,
M. B.
, and
Pruitt
,
L. A.
, 2007, “
Determination of Strain Energy Function for Arterial Elastin: Experiments Using Histology and Mechanical Tests
,”
J. Biomech.
0021-9290,
40
, pp.
586
594
.
9.
Christie
,
G. W.
, and
Barratt-Boyes
,
B. G.
, 1995, “
Age-Dependent Changes in the Radial Stretch of Human Aortic Valve Leaflets Determined by Biaxial Stretching
,”
Ann. Thorac. Surg.
0003-4975,
60
, pp.
S156
S159
.
10.
Jesudason
,
R.
,
Black
,
L.
,
Majumdar
,
A.
,
Stone
,
P.
, and
Suki
,
B.
, 2007, “
Differential Effects of Static and Cyclic Stretching During Elastase Digestion on the Mechanical Properties of Extracellular Matrices
,”
J. Appl. Physiol.
8750-7587,
103
, pp.
803
811
.
11.
Fonck
,
E.
,
Prod'hom
,
G.
,
Roy
,
S.
,
Augsburger
,
L.
,
Rufenacht
,
D. A.
, and
Stergiopulos
,
N.
, 2007, “
Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
292
, pp.
H2754
H2763
.
12.
Lammers
,
S. R.
,
Kao
,
P. H.
,
Qi
,
H. J.
,
Hunter
,
K.
,
Lanning
,
C.
,
Albietz
,
J.
,
Hofmeister
,
S.
,
Mecham
,
R.
,
Stenmark
,
K. R.
, and
Shandas
,
R.
, 2008, “
Changes in the Structure-Function Relationship of Elastin and Its Impact on the Proximal Pulmonary Arterial Mechanics of Hypertensive Calves
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
295
, pp.
H1451
H1459
.
13.
Drake
,
M. J.
,
Hedlund
,
P.
,
Mills
,
I. W.
,
McCoy
,
R.
,
McMurray
,
G.
,
Gardner
,
B.
,
Andersson
,
K. -E.
, and
Brading
,
A. F.
, 2000, “
Structural and Functional Denervation of Human Detrusor After Spinal Cord Injury
,”
Lab. Invest.
0023-6837,
80
, pp.
1491
1499
.
14.
Watanabe
,
T.
,
Rivas
,
D. A.
, and
Chancellor
,
M. B.
, 1996, “
Urodynamics of Spinal Cord Injury
,”
Urol. Clin. North Am.
0094-0143,
23
, pp.
459
473
.
15.
Mimata
,
H.
,
Satoh
,
F.
,
Tanigawa
,
T.
,
Nomura
,
Y.
, and
Ogata
,
J.
, 1993, “
Changes of Rat Urinary Bladder During Acute Phase of Spinal Cord Injury
,”
Urol. Int.
0042-1138,
51
, pp.
89
93
.
16.
Deveaud
,
C. M.
,
Macarak
,
E. J.
,
Kucich
,
U.
,
Ewalt
,
D. H.
,
Abrams
,
W. R.
, and
Howard
,
P. S.
, 1998, “
Molecular Analysis of Collagens in Bladder Fibrosis
,”
J. Urol. (Baltimore)
0022-5347,
160
, pp.
1518
1527
.
17.
Shin
,
J. C.
,
Park
,
C. I.
,
Kim
,
H. J.
, and
Lee
,
I. Y.
, 2002, “
Significance of Low Compliance Bladder in Cauda Equina Injury
,”
Spinal Cord
1362-4393,
40
, pp.
650
655
.
18.
Hackler
,
R. H.
,
Hall
,
M. K.
, and
Zampieri
,
T. A.
, 1989, “
Bladder Hypocompliance in the Spinal Cord Injury Population
,”
J. Urol.
,
141
, pp.
1390
1393
. 0022-5347
19.
Weld
,
K. J.
,
Graney
,
M. J.
, and
Dmochowski
,
R. R.
, 2000, “
Differences in Bladder Compliance With Time and Associations of Bladder Management With Compliance in Spinal Cord Injured Patients
,”
J. Urol.
,
163
, pp.
1228
1233
. 0022-5347
20.
Gloeckner
,
D. C.
,
Sacks
,
M. S.
,
Fraser
,
M. O.
,
Somogyi
,
G. T.
,
de Groat
,
W. C.
, and
Chancellor
,
M. B.
, 2002, “
Passive Biaxial Mechanical Properties of the Rat Bladder Wall After Spinal Cord Injury
,”
J. Urol.
,
167
, pp.
2247
2252
. 0022-5347
21.
Toosi
,
K. K.
,
Nagatomi
,
J.
,
Chancellor
,
M. B.
, and
Sacks
,
M. S.
, 2008, “
The Effects of Long-Term Spinal Cord Injury on Mechanical Properties of the Rat Urinary Bladder
,”
Ann. Biomed. Eng.
0090-6964,
36
, pp.
1470
1480
.
22.
Nagatomi
,
J.
,
Gloeckner
,
D. C.
,
Chancellor
,
M. B.
,
DeGroat
,
W. C.
, and
Sacks
,
M. S.
, 2004, “
Changes in the Biaxial Viscoelastic Response of the Urinary Bladder Following Spinal Cord Injury
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1409
1419
.
23.
Nagatomi
,
J.
,
DeMiguel
,
F.
,
Torimoto
,
K.
,
Chancellor
,
M. B.
,
Getzenberg
,
R. H.
, and
Sacks
,
M. S.
, 2005, “
Early Molecular-Level Changes in Rat Bladder Wall Tissue Following Spinal Cord Injury
,”
Biochem. Biophys. Res. Commun.
0006-291X,
334
, pp.
1159
1164
.
24.
Nagatomi
,
J.
,
Toosi
,
K. K.
,
Grashow
,
J. S.
,
Chancellor
,
M. B.
, and
Sacks
,
M. S.
, 2005, “
Quantification of Bladder Smooth Muscle Orientation in Normal and Spinal Cord Injured Rats
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
1078
1089
.
25.
Ottani
,
V.
,
Raspanti
,
M.
, and
Ruggeri
,
A.
, 2001, “
Collagen Structure and Functional Implications
,”
Micron
0968-4328,
32
, pp.
251
260
.
26.
Murakumo
,
M.
,
Ushiki
,
T.
,
Abe
,
K.
,
Matsumura
,
K.
,
Shinno
,
Y.
, and
Koyanagi
,
T.
, 1995, “
Three-Dimensional Arrangement of Collagen and Elastin Fibers in the Human Urinary Bladder: A Scanning Electron Microscopic Study
,”
J. Urol.
,
154
, pp.
251
256
. 0022-5347
27.
Kim
,
K. M.
,
Kogan
,
B. A.
,
Massad
,
C. A.
, and
Huang
,
Y. C.
, 1991, “
Collagen and Elastin in the Normal Fetal Bladder
,”
J. Urol.
,
146
, pp.
524
527
. 0022-5347
28.
Macarak
,
E. J.
, and
Howard
,
P. S.
, 1999, “
The Role of Collagen in Bladder Filling
,”
Adv. Exp. Med. Biol.
0065-2598,
462
, pp.
215
223
.
29.
Chang
,
S. L.
,
Howard
,
P. S.
,
Koo
,
H. P.
, and
Macarak
,
E. J.
, 1998, “
Role of Type III Collagen in Bladder Filling
,”
Neurourol Urodyn.
,
17
, pp.
135
145
. 0733-2467
30.
Rosenbloom
,
J.
,
Koo
,
H.
,
Howard
,
P. S.
,
Mecham
,
R.
, and
Macarak
,
E. J.
, 1995, “
Elastic Fibers and Their Role in Bladder Extracellular Matrix
,”
Adv. Exp. Med. Biol.
0065-2598,
385
, pp.
161
172
.
31.
Gabella
,
G.
, and
Uvelius
,
B.
, 1990, “
Urinary Bladder of Rat: Fine Structure of Normal and Hypertrophic Musculature
,”
Cell Tissue Res.
0302-766X,
262
, pp.
67
79
.
32.
Korossis
,
S.
,
Bolland
,
F.
,
Ingham
,
E.
,
Fisher
,
J.
,
Kearney
,
J.
, and
Southgate
,
J.
, 2006, “
Review: Tissue Engineering of the Urinary Bladder: Considering Structure-Function Relationships and the Role of Mechanotransduction
,”
Tissue Eng.
1076-3279,
12
, pp.
635
644
.
33.
Rubinstein
,
M.
,
Sampaio
,
F. J.
, and
Costa
,
W. S.
, 2007, “
Stereological Study of Collagen and Elastic System in the Detrusor Muscle of Bladders From Controls and Patients With Infravesical Obstruction
,”
Int. Braz. J. Urol.
,
33
, pp.
33
39
, discussion 9–41. 1677-5538
34.
Shapiro
,
S. D.
,
Endicott
,
S. K.
,
Province
,
M. A.
,
Pierce
,
J. A.
, and
Campbell
,
E. J.
, 1991, “
Marked Longevity of Human Lung Parenchymal Elastic Fibers Deduced From Prevalence of D-Aspartate and Nuclear Weapons-Related Radiocarbon
,”
J. Clin. Invest.
0021-9738,
87
, pp.
1828
1834
.
35.
Nagatomi
,
J.
,
Toosi
,
K. K.
,
Chancellor
,
M. B.
, and
Sacks
,
M. S.
, 2008, “
Contribution of the Extracellular Matrix to the Viscoelastic Behavior of the Urinary Bladder Wall
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
395
404
.
36.
Stella
,
J. A.
, and
Sacks
,
M. S.
, 2007, “
On the Biaxial Mechanical Properties of the Layers of the Aortic Valve Leaflet
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
757
766
.
37.
Brown
,
A. L.
,
Brook-Allred
,
T. T.
,
Waddell
,
J. E.
,
White
,
J.
,
Werkmeister
,
J. A.
,
Ramshaw
,
J. A. M.
,
Bagli
,
D. J.
, and
Woodhouse
,
K. A.
, 2005, “
Bladder Acellular Matrix as a Substrate for Studying In Vitro Bladder Smooth Muscle-Urothelial Cell Interactions
,”
Biomaterials
0142-9612,
26
, pp.
529
543
.
38.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
0374-3535,
61
, pp.
199
246
.
39.
Zulliger
,
M. A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
, 2004, “
A Constitutive Formulation of Arterial Mechanics Including Vascular Smooth Muscle Tone
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
287
, pp.
H1335
H1343
.
40.
Horowitz
,
A.
,
Lanir
,
Y.
,
Yin
,
F. C.
,
Perl
,
M.
,
Sheinman
,
I.
, and
Strumpf
,
R. K.
, 1988, “
Structural Three-Dimensional Constitutive Law for the Passive Myocardium
,”
ASME J. Biomech. Eng.
0148-0731,
110
, pp.
200
207
.
41.
Lanir
,
Y.
, 1979, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
0021-9290,
12
, pp.
423
436
.
42.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
, pp.
1
12
.
43.
Lanir
,
Y.
,
Lichtenstein
,
O.
, and
Imanuel
,
O.
, 1996, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
41
47
.
44.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
280
287
.
45.
Mendenhall
,
W.
, and
Sincich
,
T.
, 1988,
Statistics for the Engineering and Computer Sciences
,
Dellen
,
San Francisco, CA
, p.
1036
.
46.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1997, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
0090-6964,
25
, pp.
678
689
.
47.
Roy
,
S.
,
Tsamis
,
A.
,
Prod'hom
,
G.
, and
Stergiopulos
,
N.
, 2008, “
On the in-Series and in-Parallel Contribution of Elastin Assessed by a Structure-Based Biomechanical Model of the Arterial Wall
,”
J. Biomech.
0021-9290,
41
, pp.
737
743
.
48.
Liu
,
X.
,
Zhao
,
Y.
,
Pawlyk
,
B.
,
Damaser
,
M.
, and
Li
,
T.
, 2006, “
Failure of Elastic Fiber Homeostasis Leads to Pelvic Floor Disorders
,”
Am. J. Pathol.
0002-9440,
168
, pp.
519
528
.
49.
Karam
,
J. A.
,
Vazquez
,
D. V.
,
Lin
,
V. K.
, and
Zimmern
,
P. E.
, 2007, “
Elastin Expression and Elastic Fibre Width in the Anterior Vaginal Wall of Postmenopausal Women With and Without Prolapse
,”
BJU Int.
1464-4096,
100
, pp.
346
350
.
50.
Caulfield
,
J. B.
, and
Borg
,
T. K.
, 1979, “
The Collagen Network of the Heart
,”
Lab. Invest.
0023-6837,
40
, pp.
364
372
.
51.
Robinson
,
T. F.
,
Factor
,
S. M.
,
Capasso
,
J. M.
,
Wittenberg
,
B. A.
,
Blumenfeld
,
O. O.
, and
Seifter
,
S.
, 1987, “
Morphology, Composition, and Function of Struts Between Cardiac Myocytes of Rat and Hamster
,”
Cell Tissue Res.
0302-766X,
249
, pp.
247
255
.
52.
MacKenna
,
D. A.
,
Omens
,
J. H.
, and
Covell
,
J. W.
, 1996, “
Left Ventricular Perimysial Collagen Fibers Uncoil Rather Than Stretch During Diastolic Filling
,”
Basic Res. Cardiol.
0300-8428,
91
, pp.
111
122
.
You do not currently have access to this content.