A constituent based nonlinear viscoelastic (VE) model was modified from a previous study (Vena, et al., 2006, “A Constituent-Based Model for the Nonlinear Viscoelastic Behavior of Ligaments,” J. Biomech. Eng., 128, pp. 449–457) to incorporate a glycosaminoglycan (GAG)-collagen (COL) stress balance using compressible elastic stress constitutive equations specific to articular cartilage (AC). For uniaxial loading of a mixture of quasilinear VE constituents, time constant and relaxation ratio equations are derived to highlight how a mixture of constituents with distinct quasilinear VE properties is one mechanism that produces a nonlinear VE tissue. Uniaxial tension experiments were performed with newborn bovine AC specimens before and after 55% and 85% GAG depletion treatment with guanidine. Experimental tissue VE parameters were calculated directly from stress relaxation data, while intrinsic COL VE parameters were calculated by curve fitting the data with the nonlinear VE model with intrinsic GAG viscoelasticity neglected. Select tissue and intrinsic COL VE parameters were significantly different from control and experimental groups and correlated with GAG content, suggesting that GAG-COL interactions exist to modulate tissue and COL mechanical properties. Comparison of the results from this and other studies that subjected more mature AC tissue to GAG depletion treatment suggests that the GAGs interact with the COL network in a manner that may be beneficial for rapid volumetric expansion during developmental growth while protecting cells from excessive matrix strains. Furthermore, the underlying GAG-COL interactions appear to diminish as the tissue matures, indicating a distinctive remodeling response during developmental growth.

1.
Linn
,
F. C.
, and
Sokoloff
,
L.
, 1965, “
Movement and Composition of Interstitial Fluid of Cartilage
,”
Arthritis Rheum.
0004-3591,
8
, pp.
481
494
.
2.
Buckwalter
,
J.
,
Hunziker
,
E.
,
Rosenberg
,
L.
,
Coutts
,
R.
,
Adams
,
M.
, and
Eyre
,
D.
, 1988, “
Articular Cartilage: Composition and Structure
,”
Injury and Repair of the Musculoskeletal Soft Tissues
,
S. L.-Y.
Woo
and
J. A.
Buckwalter
, eds.,
American Academy of Orthopaedic Surgeons
,
Park Ridge, IL
, pp.
405
425
.
3.
Mow
,
V. C.
, and
Ratcliffe
,
A.
, 1997, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics
,
V. C.
Mow
and
W. C.
Hayes
, eds.,
Raven
,
New York
, pp.
113
178
.
4.
Klisch
,
S. M.
,
Chen
,
S. S.
,
Sah
,
R. L.
, and
Hoger
,
A.
, 2003, “
A Growth Mixture Theory for Cartilage With Applications to Growth-Related Experiments on Cartilage Explants
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
169
179
.
5.
Klisch
,
S. M.
,
Asanbaeva
,
A.
,
Oungoulian
,
S. R.
,
Thonar
,
E. J.
,
Masuda
,
K.
,
Davol
,
A.
, and
Sah
,
R. L.
, 2008, “
A Cartilage Growth Mixture Model With Collagen Remodeling: Validation Protocols
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
031006
.
6.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 1997, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
15
, pp.
499
506
.
7.
Huang
,
C. Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
799
809
.
8.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
576
586
.
9.
Laasanen
,
M.
,
Toyras
,
J.
,
Korhonen
,
R.
,
Rieppo
,
J.
,
Saarakkala
,
S.
,
Nieminen
,
M.
,
Hirvonen
,
J.
, and
Jurvelin
,
J. S.
, 2003, “
Biomechanical Properties of Knee Articular Cartilage
,”
Biorheology
0006-355X,
40
, pp.
133
140
.
10.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 1999, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1037
1047
.
11.
Krishnan
,
R.
,
Park
,
S.
,
Eckstein
,
F.
, and
Ateshian
,
G. A.
, 2003, “
Inhomogeneous Cartilage Properties Enhance Superficial Insterstitial Fluid Support and Frictional Properties, but Do Not Provide a Homogeneous State of Stress
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
569
577
.
12.
Mak
,
A. F.
, 1986, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
123
130
.
13.
Suh
,
J. -K.
, and
DiSilvestro
,
M. R.
, 1999, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
528
535
.
14.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
410
417
.
15.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2003, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
0021-9290,
36
(
9
), pp.
1373
1379
.
16.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
, 2004, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
0021-9290,
37
, pp.
357
366
.
17.
Garcia
,
J. J.
, and
Cortes
,
D. H.
, 2006, “
A Nonlinear Biphasic Viscohyperelastic Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
2991
2998
.
18.
Fung
,
Y. C.
, 1972, “
Stress-Strain History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics: Its Foundations and Objectives
,
Y. C.
Fung
,
N.
Perrone
, and
M.
Anliker
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
181
208
.
19.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
, Jr.
, 2001, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
0090-6964,
29
(
10
), pp.
908
914
.
20.
Suh
,
J. K.
, and
Bai
,
S.
, 1998, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
195
201
.
21.
DiSilvestro
,
M. R.
, and
Suh
,
J. K.
, 2001, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
0021-9290,
34
(
4
), pp.
519
525
.
22.
Park
,
S.
, and
Ateshian
,
G. A.
, 2006, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression, and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
623
630
.
23.
Vena
,
P.
,
Gastaldi
,
D.
, and
Contro
,
R.
, 2006, “
A Constituent-Based Model for the Nonlinear Viscoelastic Behavior of Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
449
457
.
24.
Kempson
,
G. E.
,
Muir
,
H.
,
Pollard
,
C.
, and
Tuke
,
M.
, 1973, “
The Tensile Properties of the Cartilage of Human Femoral Condyles Related to the Content of Collagen and Glycosaminoglycans
,”
Biochim. Biophys. Acta
0006-3002,
297
, pp.
456
472
.
25.
Kempson
,
G. E.
,
Tuke
,
M. A.
,
Dingle
,
J. T.
,
Barrett
,
A. J.
, and
Horsfield
,
P. H.
, 1976, “
The Effects of Proteolytic Enzymes on the Mechanical Properties of Adult Human Articular Cartilage
,”
Biochim. Biophys. Acta
0006-3002,
428
, pp.
741
760
.
26.
Schmidt
,
M. B.
,
Mow
,
V. C.
,
Chun
,
L. E.
, and
Eyre
,
D. R.
, 1990, “
Effects of Proteoglycan Extraction on the Tensile Behavior of Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
8
, pp.
353
363
.
27.
DiSilvestro
,
M. R.
, and
Suh
,
J. K.
, 2002, “
Biphasic Poroviscoelastic Characteristics of Proteoglycan-Depleted Articular Cartilage: Simulation of Degeneration
,”
Ann. Biomed. Eng.
0090-6964,
30
(
6
), pp.
792
800
.
28.
Asanbaeva
,
A.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
,
Klisch
,
S. M.
, and
Sah
,
R. L.
, 2007, “
Mechanisms of Cartilage Growth: Modulation of Balance Between Proteoglycan and Collagen In Vitro Using Chondroitinase ABC
,”
Arthritis Rheum.
0004-3591,
56
, pp.
188
198
.
29.
Asanbaeva
,
A.
,
Tam
,
J.
,
Schumacher
,
B. L.
,
Klisch
,
S. M.
,
Masuda
,
K.
, and
Sah
,
R. L.
, 2008, “
Articular Cartilage Tensile Integrity: Modulation by Matrix Depletion Is Maturation-Dependent
,”
Arch. Biochem. Biophys.
0003-9861,
474
(
1
), pp.
175
182
.
30.
Al Jamal
,
R.
,
Roughley
,
P. J.
, and
Ludwig
,
M. S.
, 2001, “
Effect of Glycosaminoglycan Degradation on Lung Tissue Viscoelasticity
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
1040-0605,
280
(
2
), pp.
L306
315
.
31.
Tanaka
,
E.
,
Aoyama
,
J.
,
Tanaka
,
M.
,
Van Eijden
,
T.
,
Sugiyama
,
M.
,
Hanaoka
,
K.
,
Watanabe
,
M.
, and
Tanne
,
K.
, 2003, “
The Proteoglycan Contents of the Temporomandibular Joint Disc Influence Its Dynamic Viscoelastic Properties
,”
J. Biomed. Mater. Res. Part A
1549-3296,
65
(
3
), pp.
386
392
.
32.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
, 2003, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
0090-6964,
31
(
5
), pp.
599
605
.
33.
Liao
,
J.
, and
Vesely
,
I.
, 2004, “
Relationship Between Collagen Fibrils, Glycosaminoglycans, and Stress Relaxation in Mitral Valve Chordae Tendineae
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
977
983
.
34.
Li
,
L. P.
, and
Herzog
,
W.
, 2004, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Theory and Numerical Formulation
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
181
194
.
35.
Li
,
L. P.
,
Herzog
,
W.
,
Korhonen
,
R. K.
, and
Jurvelin
,
J. S.
, 2005, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Axial Tension Versus Compression
,”
Med. Eng. Phys.
1350-4533,
27
(
1
), pp.
51
57
.
36.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1195
1204
.
37.
Garcia
,
J. J.
, and
Cortes
,
D. H.
, 2007, “
A Biphasic Viscohyperelastic Fibril-Reinforced Model for Articular Cartilage: Formulation and Comparison With Experimental Data
,”
J. Biomech.
0021-9290,
40
(
8
), pp.
1737
1744
.
38.
Basser
,
P. J.
,
Schneiderman
,
R.
,
Bank
,
R. A.
,
Wachtel
,
E.
, and
Maroudas
,
A.
, 1998, “
Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique
,”
Arch. Biochem. Biophys.
0003-9861,
351
, pp.
207
219
.
39.
Oungoulian
,
S. R.
,
Chen
,
S. S.
,
Davol
,
A.
,
Sah
,
R. L.
, and
Klisch
,
S. M.
, 2007, “
Extended Two-Compartmental Swelling Stress Model and Isotropic Cauchy Stress Equation for Articular Cartilage Proteoglycans
,”
ASME Summer Bioengineering Conference
, Keystone, CO.
40.
Klisch
,
S. M.
, 2007, “
A Bimodular Polyconvex Anisotropic Strain Energy Function for Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
250
258
.
41.
Asanbaeva
,
A.
, 2006, “
Cartilage Growth and Remodeling: Modulation of Growth Phenotype and Tensile Integrity
,” Ph.D. thesis, University of California, La Jolla, San Diego, CA.
42.
Williamson
,
A. K.
,
Chen
,
A. C.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
, and
Sah
,
R. L.
, 2003, “
Tensile Mechanical Properties of Bovine Articular Cartilage: Variations With Growth and Relationships to Collagen Network Components
,”
J. Orthop. Res.
0736-0266,
21
, pp.
872
880
.
43.
Williamson
,
A. K.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
, and
Sah
,
R. L.
, 2003, “
Growth of Immature Articular Cartilage In Vitro: Correlated Variation in Tensile Biomechanical and Collagen Network Properties
,”
Tissue Eng.
1076-3279,
9
, pp.
625
634
.
44.
Farndale
,
R. W.
,
Buttle
,
D. J.
, and
Barrett
,
A. J.
, 1986, “
Improved Quantitation and Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene Blue
,”
Biochim. Biophys. Acta
0006-3002,
883
, pp.
173
177
.
45.
Woessner
, Jr.,
J. F.
, 1961, “
The Determination of Hydroxyproline in Tissue and Protein Samples Containing Small Proportions of This Imino Acid
,”
Arch. Biochem. Biophys.
0003-9861,
93
, pp.
440
447
.
46.
Kim
,
Y. J.
,
Sah
,
R. L. Y.
,
Doong
,
J. Y. H.
, and
Grodzinsky
,
A. J.
, 1988, “
Fluorometric Assay of DNA in Cartilage Explants Using Hoechst 33258
,”
Anal. Biochem.
0003-2697,
174
, pp.
168
176
.
47.
Sasazaki
,
Y.
,
Shore
,
R.
, and
Seedhom
,
B. B.
, 2004, “
Ultrastructure of Cartilage Under Tensile Strain
,”
Transactions of the 50th Annual Meeting, Orthopaedic Research Society
0149-6433,
29
, pp.
606
.
48.
Ficklin
,
T. P.
,
Thomas
,
G. C.
,
Barthel
,
J. C.
,
Asanbaeva
,
A.
,
Thonar
,
E. J.
,
Masuda
,
K.
,
Chen
,
A. C.
,
Sah
,
R. L.
,
Davol
,
A.
, and
Klisch
,
S. M.
, 2007, “
Articular Cartilage Mechanical and Biochemical Property Relations Before and After In Vitro Growth
,”
J. Biomech.
0021-9290,
40
, pp.
3607
3614
.
49.
Morel
,
V.
, and
Quinn
,
T. M.
, 2004, “
Cartilage Injury by Ramp Compression Near the Gel Diffusion Rate
,”
J. Orthop. Res.
0736-0266,
22
, pp.
145
151
.
50.
Hardingham
,
T. E.
,
Muir
,
H.
,
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1987, “
Viscoelastic Properties of Proteoglycan Solutions With Varying Proportions Present as Aggregates
,”
J. Orthop. Res.
0736-0266,
5
, pp.
36
46
.
51.
Mow
,
V. C.
,
Mak
,
A. F.
,
Lai
,
W. M.
,
Rosenberg
,
L. C.
, and
Tang
,
L. H.
, 1984, “
Viscoelastic Properties of Proteoglycan Subunits and Aggregates in Varying Solution Concentrations
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
325
338
.
52.
Spirt
,
A. A.
,
Mak
,
A. F.
, and
Wassell
,
R. P.
, 1989, “
Nonlinear Viscoelastic Properties of Articular Cartilage in Shear
,”
J. Orthop. Res.
0736-0266,
7
, pp.
43
49
.
53.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
, 1993, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatment
,”
J. Orthop. Res.
0736-0266,
11
, pp.
771
781
.
54.
Bhatia
,
A.
, and
Vesely
,
I.
, 2005, “
The Effect of Glycosaminoglycans and Hydration on the Viscoelastic Properties of Aortic Valve Cusps
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
3
, pp.
2979
2980
. 1557-170X
You do not currently have access to this content.