The endothelial glycocalyx mediates interactions between the blood flow and the endothelium. This study aims to evaluate, quantitatively, effects of structural change of the glycocalyx on stress distribution and shear rate on endothelial cells. In the study, the endothelial glycocalyx is modeled as a surface layer of fiber matrix and when exposed to laminar shear flow, the matrix deforms. Fluid velocity and stress distribution inside the matrix and on cell membranes are studied based on a binary mixture theory. Parameters, such as the height and porosity of the matrix and the drag coefficient between fluid and matrix fibrils, are based on available data and estimation from experiments. Simple theoretical solutions are achieved for fluid velocity and stress distribution in the surface matrix. Degradation of the matrix, e.g., by enzyme digestion, is represented by reductions in the volume fraction of fibrils, height, and drag coefficient. From a force balance, total stress on endothelial surface remains constant regardless of structural alteration of the glycocalyx. However, the stress that is transmitted to endothelial cells by direct “pulling” of fiber branches of the glycocalyx is reduced significantly. Fluid shear rate at the cell membrane, on the other hand, increases. The study gives quantitative insight into the effect of the structural change of the glycocalyx on the shear rate and pulling stress on the endothelium. Results can be used to interpret experiments on effects of the glycocalyx in shear induced endothelial responses.

1.
Chambers
,
R.
, and
Zweifach
,
B. W.
, 1947, “
Intercellular Cement and Capillary Permeability
,”
Physiol. Rev.
0031-9333,
27
, pp.
436
463
.
2.
Luft
,
J. H.
, 1966, “
Fine Structure of Capillary and Endocapillary Layer as Revealed by Ruthenium Red
,”
Microcirc. Symp. Fed. Proc.
,
25
, pp.
1773
1783
.
3.
Simionescu
,
M.
,
Simionescu
,
N.
, and
Palade
,
G. E.
, 1982, “
Biochemically Differentiated Microdomains of the Cell Surface of Capillary Endothelium
,”
Ann. N.Y. Acad. Sci.
0077-8923,
401
, pp.
9
24
.
4.
Turner
,
M. R.
,
Clough
,
G.
, and
Michel
,
C. C.
, 1983, “
The Effects of Cationised Ferritin and Native Ferritin Upon the Filtration Coefficient of Single Frog Capillaries: Evidence That Proteins in the Endothelial Cell Coat Influence Permeability
,”
Microvasc. Res.
0026-2862,
25
, pp.
205
222
.
5.
Silberberg
,
A.
, 1991, “
Polyelectrolyte at the Endothelial Cell Surface
,”
Biophys. Chem.
0301-4622,
41
, pp.
9
13
.
6.
Adamson
,
R. H.
, and
Clough
,
G.
, 1992, “
Plasma Proteins Modify the Endothelial Cell Glycocalyx of Frog Mesenteric Microvessels
,”
J. Physiol. (London)
0022-3751,
445
, pp.
473
486
.
7.
Baldwin
,
A. L.
, and
Winlove
,
C. P.
, 1984, “
Effects of Perfusate Composition on Binding of Ruthenium Red and Gold Colloid to Glycocalyx of Rabbit Aortic Endothelium
,”
J. Histochem. Cytochem.
0022-1554,
32
, pp.
259
266
.
8.
Haldenby
,
K. A.
,
Chappell
,
D. C.
,
Winlove
,
C. P.
,
Parker
,
K. H.
, and
Firth
,
J. A.
, 1994, “
Focal and Regional Variations in the Composition of the Glycocalyx of Large Vessel Endothelium
,”
J. Vasc. Res.
1018-1172,
31
, pp.
2
9
.
9.
Rostgaard
,
J.
, and
Qvortrup
,
K.
, 1997, “
Electron Microscopic Demonstrations of Filamentous Molecular Sieve Plugs in Capillary Fenestrae
,”
Microvasc. Res.
0026-2862,
53
, pp.
1
13
.
10.
Vink
,
H.
, and
Duling
,
B. R.
, 1996, “
Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes and Leukocytes Within Mammalian Capillaries
,”
Circ. Res.
0009-7330,
79
, pp.
581
589
.
11.
Vink
,
H.
, and
Duling
,
B. R.
, 2000, “
Capillary Endothelial Surface Layer Selectively Reduces Plasma Solute Distribution Volume
,”
Am. J. Physiol.
0002-9513,
278
, pp.
H285
H289
.
12.
Henry
,
C. B.
, and
Duling
,
B. R.
, 1999, “
Permeation of the Luminal Capillary Glycocalyx is Determined by Hyaluronan
,”
Am. J. Physiol.
0002-9513,
277
, pp.
H508
H514
.
13.
Pries
,
A. R.
,
Secomb
,
T. W.
,
Gessner
,
T.
,
Sperandio
,
M. B.
,
Gross
,
I. F.
, and
Gaehtgens
,
P.
, 1994, “
Resistance to Blood Flow in Microvessels In Vivo
,”
Circ. Res.
0009-7330,
75
, pp.
904
915
.
14.
Pries
,
A. R.
,
Secomb
,
T. W.
,
Jacobs
,
H.
,
Sperandio
,
M.
,
Osterloh
,
K.
, and
Gaehtgens
,
P.
, 1997, “
Microvascular Blood Flow Resistance: Role of Endothelial Surface Layer
,”
Am. J. Physiol.
0002-9513,
273
, pp.
H2272
H2279
.
15.
Squire
,
J. M.
,
Chew
,
M.
,
Nneji
,
G.
,
Neal
,
C.
,
Barry
,
J.
, and
Michel
,
C. C.
, 2001, “
Quasi-Periodic Substructure in the Microvessel Endothelial Glycocalyx: A Possible Explanation for Molecular Filtering?
J. Struct. Biol.
1047-8477,
136
, pp.
239
255
.
16.
Curry
,
F. E.
, and
Michel
,
C. C.
, 1980, “
A Fiber Matrix Model of Capillary Permeability
,”
Microvasc. Res.
0026-2862,
20
, pp.
96
99
.
17.
Michel
,
C. C.
, and
Curry
,
F. E.
, 1999, “
Microvascular Permeability
,”
Physiol. Rev.
0031-9333,
79
, pp.
703
761
.
18.
Fu
,
B. M.
,
Adamson
,
R. H.
, and
Curry
,
F. E.
, 1998, “
Test of a Two-Pathway Model for Small Solute Exchange Across the Capillary Wall
,”
Am. J. Physiol.
0002-9513,
274
, pp.
H2062
H2073
.
19.
Lu
,
Y.
,
Levick
,
J. R.
, and
Wang
,
W.
, 2004, “
Concentration Polarisation of Hyaluronan on the Surface of the Synovial Lining of Infused Joints
,”
J. Physiol. (London)
0022-3751,
561
, pp.
559
573
.
20.
Lu
,
Y.
,
Levick
,
J. R.
, and
Wang
,
W.
, 2005, “
The Mechanism of Synovial Fluid Retention in Pressurized Joint Cavities
,”
Microcirculation (Philadelphia)
1073-9688,
12
, pp.
581
595
.
21.
Adamson
,
R. H.
, 1990, “
Permeability of Frog Mesenteric Capillaries After Partial Pronase Digestion of the Endothelial Glycocalyx
,”
J. Physiol. (London)
0022-3751,
428
, pp.
1
13
.
22.
Wang
,
W.
, and
Parker
,
K. H.
, 1995, “
The Effect of Deformable Porous Surface Layers on the Motion of a Sphere in a Narrow Cylindrical Tube
,”
J. Fluid Mech.
0022-1120,
283
, pp.
287
305
.
23.
Damiano
,
E. R.
,
Duling
,
B. R.
,
Ley
,
K.
, and
Ska1ak
,
T. C.
, 1996, “
Axisymmetric Pressure-Driven Flow of Rigid Pellets Through a Cylindrical Tube Lined With a Deformable Porous Wall Layer
,”
J. Fluid Mech.
0022-1120,
314
, pp.
163
189
.
24.
Secomb
,
T. W.
,
Hsu
,
R.
, and
Pries
,
A. R.
, 1998, “
A Model for Red Blood Cell Motion in Glycocalyx-Lined Capillaries
,”
Am. J. Physiol.
0002-9513,
274
, pp.
HI016
HI022
.
25.
Feng
,
J.
, and
Weinbaum
,
S.
, 2000, “
Lubrication Theory in Highly Compressible Porous Media: The Mechanics of Skiing From Red Cells to Humans
,”
J. Fluid Mech.
0022-1120,
422
, pp.
281
317
.
26.
Weinbaum
,
S.
,
Zhang
,
X. B.
,
Han
,
Y. F.
,
Vink
,
H.
, and
Cowin
,
S. C.
, 2003, “
Mechanotransduction and Flow Across the Endothelial Glycocalyx
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
13
), pp.
7988
7995
.
27.
Barry
,
S. I.
,
Parker
,
K. H.
, and
Aldis
,
G. K.
, 1991, “
Shear Flow Over a Thin Deformable Porous Layer
,”
ZAMP
0044-2275,
42
, pp.
633
648
.
28.
Arisaka
,
T.
, 1995, “
Effects of Shear Stress on Glycosaminoglycan Synthesis in Vascular Endothelial Cells
,”
Ann. N.Y. Acad. Sci.
0077-8923,
748
, pp.
543
554
.
29.
Davies
,
P. F.
, 1995, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
0031-9333,
75
, pp.
519
560
.
30.
Pries
,
A. R.
,
Secomb
,
T. W.
, and
Gaehtgens
,
P.
, 2000, “
The Endothelial Surface Layer
,”
Eur. J. Physiol.
0031-6768,
440
, pp.
653
666
.
31.
Vink
,
H.
,
Constantinescu
,
A. A.
, and
Spaan
,
J. A. E.
, 2000, “
Oxidized Lipoproteins Degrade the Endothelial Surface Layer: Implications for Platelet-Endothelial Cell Adhesion
,”
Circulation
0009-7322,
101
, pp.
1500
1502
.
32.
Biot
,
M. A.
, 1955, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
J. Appl. Phys.
0021-8979,
26
, pp.
182
185
.
33.
Atkin
,
R. J.
, and
Craine
,
R. E.
, 1976, “
Continuum Theories of Mixtures: Basic Theory and Historical Development
,”
Q. J. Mech. Appl. Math.
0033-5614,
29
, pp.
209
244
.
34.
Kenyon
,
D. E.
, 1976, “
The Theory of an Incompressible Solid-Fluid Mixture
,”
Arch. Ration. Mech. Anal.
0003-9527,
62
, pp.
131
147
.
35.
Kenyon
,
D. E.
, 1979, “
A Mathematical Model of Water Flux Through Aortic Tissue
,”
Bull. Math. Biol.
0092-8240,
41
, pp.
79
90
.
36.
Bowen
,
R. W.
, 1980, “
Incompressible Porous Media Models by the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
37.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
38.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
, 1984, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
0021-9290,
17
, pp.
377
394
.
39.
Holmes
,
M. H.
, 1985, “
A Theoretical Analysis for Determining the Nonlinear Hydraulic Permeability of a Soft Tissue From a Permeation Experiment
,”
Bull. Math. Biol.
0092-8240,
47
, pp.
669
683
.
40.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME J. Biomech. Eng.
0148-0731,
111
, pp.
78
87
.
41.
Lundgren
,
T. S.
, 1972, “
Slow Flow Through Stationary Random Beds and Suspensions of Spheres
,”
J. Fluid Mech.
0022-1120,
51
, pp.
273
299
.
42.
Brinkman
,
H. K.
, 1947, “
A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res., Sect. A
0365-7132,
1
, pp.
27
34
.
43.
Guo
,
P.
,
Weinstein
,
A. M.
, and
Weinbaum
,
S.
, 2000, “
A Hydrodynamic Mechanosensory Hypothesis for Brush Border Microvilli
,”
Am. J. Physiol.
0002-9513,
279
, pp.
F698
712
.
44.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
, 1991, “
Interspecies Comparison of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
0736-0266,
9
, pp.
330
340
.
45.
Torzilli
,
P. A.
,
Rose
,
D. E.
, and
Dethemers
,
D. A.
, 1982, “
Equilibrium Water Partition in Articular Cartilage
,”
Biorheology
0006-355X,
19
, pp.
519
537
.
46.
Maroudas
,
A.
, and
Schneiderman
,
R.
, 1987, “
Free and Exchangeable or Trapped and Non-Exchangeable Water in Cartilage
,”
J. Orthop. Res.
0736-0266,
5
, pp.
133
138
.
You do not currently have access to this content.