The stiffness and hydraulic permeability of soft contact lenses may influence its clinical performance, e.g., on-eye movement, fitting, and wettability, and may be related to the occurrence of complications; e.g., lesions. It is therefore important to determine these properties in the design of comfortable contact lenses. Micro-indentation provides a nondestructive means of measuring mechanical properties of soft, hydrated contact lenses. However, certain geometrical and material considerations must be taken into account when analyzing output force-displacement (F-D) data. Rather than solely having a solid response, mechanical behavior of hydrogel contact lenses can be described as the coupled interaction between fluid transport through pores and solid matrix deformation. In addition, indentation of thin membranes (100μm) requires special consideration of boundary conditions at lens surfaces and at the indenter contact region. In this study, a biphasic finite element model was developed to simulate the micro-indentation of a hydrogel contact lens. The model accounts for a curved, thin hydrogel membrane supported on an impermeable mold. A time-varying boundary condition was implemented to model the contact interface between the impermeable spherical indenter and the lens. Parametric studies varying the indentation velocities and hydraulic permeability show F-D curves have a sensitive region outside of which the force response reaches asymptotic limits governed by either the solid matrix (slow indentation velocity, large permeability) or the fluid transport (high indentation velocity, low permeability). Using these results, biphasic properties (Young’s modulus and hydraulic permeability) were estimated by fitting model results to F-D curves obtained at multiple indentation velocities (1.2 and 20μms). Fitting to micro-indentation tests of Etafilcon A resulted in an estimated permeability range of 1.0×1015 to 5.0×1015m4Ns and Young’s modulus range of 130to170kPa.

1.
Yang
,
W.-H.
,
Smolen
,
V. F.
, and
Peppas
,
N. A.
, 1981, “
Oxygen Permeability Coefficients of Polymers for Hard and Soft Contact Lens Applications
,”
J. Membr. Sci.
0376-7388,
9
, pp.
53
67
.
2.
Nicolson
,
P. C.
, and
Vogt
,
J.
, 2001, “
Soft Contact Lens Polymers: an Evolution
,”
Biomaterials
0142-9612,
22
, pp.
3273
3283
.
3.
Holden
,
B. A.
,
Stephenson
,
A.
,
Stretton
,
S.
,
Sankaridurg
,
P. R.
,
O’Hare
,
N.
,
Jalbert
,
I.
, and
Sweeney
,
D. F.
, 2001, “
Superior Epithelial Arcuate Lesions With Soft Contact Lens Wear
,”
Optom. Vision Sci.
1040-5488,
78
(
1
), pp.
9
12
.
4.
Jones
,
L. W.
, and
Jones
,
D. A.
, 2000,
Common Contact Lens Complications: Their Recognition and Management
,
Butterworth-Heinemann
,
Boston
.
5.
Kikkawa
,
Y.
, “
Soft Contact Lens Kinetics, in Contact Lens Practice
,”
M.
Ruben
and
M.
Guillon
, eds.
Chapman & Hall
,
London
, pp.
113
121
.
6.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
7.
Anseth
,
K. S.
,
Bowman
,
C. N.
, and
BrannonPeppas
,
L.
, 1996, “
Mechanical Properties of Hydrogels and Their Experimental Determination
,”
Biomaterials
0142-9612,
17
(
17
), pp.
1647
1657
.
8.
Stammen
,
J. A.
,
Williams
,
S.
,
Ku
,
D. N.
, and
Guldberg
,
R. E.
, 2001, “
Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression
,”
Biomaterials
0142-9612,
22
(
8
), pp.
799
806
.
9.
Marra
,
S. P.
,
Ramesh
,
K. T.
, and
Douglas
,
A. S.
, 2001, “
Mechanical Characterization of Active Poly(vinyl alcohol)-poly(acrylic acid) gel
,”
Mater. Sci. Eng., C
0928-4931,
14
(
1–2
), pp.
25
34
.
10.
Hinkley
,
J. A.
,
Morgret
,
L. D.
, and
Gehrke
,
S. H.
, 2004, “
Tensile Properties of Two Responsive Hydrogels
,”
Polymer
0032-3861,
45
(
26
), pp.
8837
8843
.
11.
Drury
,
J. L.
,
Dennis
,
R. G.
, and
Mooney
,
D. J.
, 2004, “
The Tensile Properties of Alginate Hydrogels
,”
Biomaterials
0142-9612,
25
(
16
), pp.
3187
3199
.
12.
Enns
,
J. B.
, 1996, “
Dynamic Mechanical Properties of Hydrogels
,”
Proc. of the 1996 54th Annual Technical Conference
, Vol.
3
, pp.
2852
2856
.
13.
Yasuda
,
H.
,
Lamaze
,
C. E.
, and
Peterlin
,
A.
, 1971, “
Diffusive and Hydraulic Permeabilities of Water in Water-Swollen Polymer Membranes
,”
J. Polym. Sci., Part A-2
0098-1273,
9
(
6
), pp.
1117
1131
.
14.
Refojo
,
M. F.
, 1965, “
Permeation of Water through Some Hydrogels
,”
J. Appl. Polym. Sci.
0021-8995,
9
(
10
), pp.
3417
-
3426
.
15.
Monticelli
,
M. V.
,
Chauhan
,
A.
, and
Radke
,
C. J.
, 2005, “
The Effect of Water Hydraulic Permeability on the Settling of a Soft Contact Lens on the Eye
,”
Curr. Eye Res.
0271-3683,
30
(
5
), pp.
329
336
.
16.
Chiarelli
,
P.
,
Basser
,
P. J.
,
Derossi
,
D.
, and
Goldstein
,
S.
, 1992, “
The Dynamics of a Hydrogel Strip
,”
Biorheology
0006-355X,
29
, pp.
383
398
.
17.
LeRoux
,
M. A.
, and
Setton
,
L. A.
, 2002, “
Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
3
), pp.
315
321
.
18.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 2004, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
0884-2914,
19
(
1
), pp.
3
20
.
19.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
, 2004, “
Nanoindentation of Soft Hydrated Materials for Application to Vascular Tissues
,”
J. Biomed. Mater. Res.
0021-9304,
69A
(
2
), pp.
222
232
.
20.
Yang
,
F. Q.
, and
Fei
,
P. X.
, 2004, “
Microindentation of Ground Silicon Wafers
,”
Semicond. Sci. Technol.
0268-1242,
19
(
9
), pp.
1165
1168
.
21.
Gilbert
,
J. L.
,
Cumber
,
J.
, and
Butterfield
,
A.
, 2002, “
Surface Micromechanics of Ultrahigh Molecular Weight Polyethylene: Microindentation Testing, Crosslinking, and Material Behavior
,”
J. Biomed. Mater. Res.
0021-9304,
61
(
2
), pp.
270
281
.
22.
Ebenstein
,
D. M.
,
Kuo
,
A.
,
Rodrigo
,
J. J.
,
Reddi
,
A. H.
,
Ries
,
M.
, and
Pruitt
,
L.
, 2004, “
A Nanoindentation Technique for Functional Evaluation of Cartilage Repair Tissue
,”
J. Mater. Res.
0884-2914,
19
(
1
), pp.
273
281
.
23.
Hale
,
J. E.
,
Rudert
,
M. J.
, and
Brown
,
T. D.
, 1993, “
Indentation Assessment of Biphasic Mechanical Property Deficits in Size-Dependent Osteochondral Defect Repair
,”
J. Biomech.
0021-9290,
26
(
11
), pp.
1319
1325
.
24.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
, 1989, “
Biphasic Indentation of Articular Cartilage--II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
0021-9290,
22
(
8–9
), pp.
853
861
.
25.
Goldsmith
,
A. A. J.
, and
Clift
,
S. E.
, 1998, “
Investigation into the Biphasic Properties of a Hydrogel for use in a Cushion Form Replacement Joint
,”
J. Biomech. Eng.
0148-0731,
120
(
3
), pp.
362
369
.
26.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1987, “
Biphasic Indentation of Articular Cartilage--I. Theoretical Analysis
,”
J. Biomech.
0021-9290,
20
(
7
), pp.
703
714
.
27.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1992, “
A Finite-Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular-Cartilage
,”
J. Biomech. Eng.
0148-0731,
114
(
2
), pp.
191
201
.
28.
Hoffman
,
A. S.
, 2002, “
Hydrogels for Biomedical Applications
,”
Adv. Drug Delivery Rev.
0169-409X,
54
(
1
), pp.
3
12
.
29.
Manetti
,
C.
,
Casciani
,
L.
, and
Pescosolido
,
N.
, 2002, “
Diffusive Contribution to Permeation of Hydrogel Contact Lenses: Theoretical Model and Experimental Evaluation by Nuclear Magnetic Resonance Techniques
,”
Polymer
0032-3861,
43
(
1
), pp.
87
92
.
30.
ADINA Theory and Modeling guide
.
ADINA Inc.
, 2003.
31.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
(
11
), pp.
1145
1156
.
32.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. Y.
, and
Cheung
,
H. S.
, 2003, “
New Insight into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
593
598
.
33.
Lai
,
W. M.
, and
Mow
,
V. C.
, 1980, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
0006-355X,
17
(
1–2
), pp.
111
123
.
34.
Rennie
,
A. C.
,
Dickrell
,
P. L.
, and
Sawyer
,
W. G.
, 2005, “
Friction Coefficient of Soft Contact Lenses: Measurements and Modeling
,”
Tribol. Lett.
1023-8883,
18
, pp.
499
504
.
35.
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1985, “
Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage
,”
J. Biomech. Eng.
0148-0731,
107
(
3
), pp.
206
218
.
36.
Bae
,
W. C.
,
Lewis
,
C. W.
,
Levenston
,
M. E.
, and
Sah
,
R. L.
, 2006, “
Indentation Testing of Human Articular Cartilage: Effects of Probe Tip Geometry and Indentation Depth on Intra-Tissue Strain
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1039
1047
.
You do not currently have access to this content.