Abstract

Fiber network theory was developed to describe cloth, a thin material with strength in the fiber directions. The interosseous ligament (IOL) of the forearm is a broad, thin ligament with highly aligned fibers. The objectives of this study were to develop a model of the stress and strain distributions in the IOL, based on fiber network theory, to compare the strains from the model with the experimentally measured strains, and to evaluate the force distribution across the ligament fibers from the model. The geometries of the radius, ulna, and IOL were reconstructed from CT scans. Position and orientation of IOL insertion sites and force in the IOL were measured during a forearm compression experiment in pronation, neutral rotation, and supination. An optical image-based technique was used to directly measure strain in two regions of the IOL in neutral rotation. For the network model, the IOL was represented as a parametric ruled three-dimensional surface, with rulings along local fiber directions. Fiber strains were calculated from the deformation field, and fiber stresses were calculated from the strains using average IOL tensile properties from a previous study. The in situ strain in the IOL was assumed uniform and was calculated so that the net force predicted by the network model in neutral rotation matched the experimental result. The net force in the IOL was comparable to experimental results in supination and pronation. The model predicted higher stress and strain in fibers near the elbow in neutral rotation, and higher stresses in fibers near the wrist in supination. Strains in neutral forearm rotation followed the same trends as those measured experimentally. In this study, a model of stress and strain in the IOL utilizing fiber network theory was successfully implemented. The model illustrates variations in the stress and strain distribution in the IOL. This model can be used to show surgeons how different fibers are taut in different forearm rotation positions—this information is important for understanding the biomechanical role of the IOL and for planning an IOL reconstruction.

1.
Gardiner
,
J. C.
,
Weiss
,
J. A.
, and
Rosenberg
,
T. D.
, 2001, “
Strain in the Human Medial Collateral Ligament During Valgus Loading of the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
391
, pp.
266
274
.
2.
Kwan
,
M. K.
, and
Woo
,
S. L.
, 1989, “
A Structural Model to Describe the Nonlinear Stress-Strain Behavior for Parallel-Fibered Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
361
363
.
3.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
293
298
.
4.
Woo
,
S. L.
,
Weiss
,
J. A.
,
Gomez
,
M. A.
, and
Hawkins
,
D. A.
, 1990, “
Measurement of Changes in Ligament Tension With Knee Motion and Skeletal Maturation
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
1
), pp.
46
51
.
5.
Kennedy
,
J. C.
,
Hawkins
,
R. J.
, and
Willis
,
R. B.
, 1977, “
Strain Gauge Analysis of Knee Ligaments
,”
Clin. Orthop. Relat. Res.
0009-921X,
129
, pp.
225
229
.
6.
Beynnon
,
B.
,
Howe
,
J. G.
,
Pope
,
M. H.
,
Johnson
,
R. J.
, and
Fleming
,
B. C.
, 1992, “
The Measurement of Anterior Cruciate Ligament Strain In Vivo
,”
Int. Orthop.
0341-2695,
16
(
1
), pp.
1
12
.
7.
Markolf
,
K. L.
,
Willems
,
M. J.
,
Jackson
,
S. R.
, and
Finerman
,
G. A.
, 1998, “
In Situ Calibration of Miniature Sensors Implanted Into the Anterior Cruciate Ligament. I. Strain Measurements
,”
J. Orthop. Res.
0736-0266,
16
(
4
), pp.
455
463
.
8.
Woo
,
S. L.
,
Gomez
,
M. A.
,
Seguchi
,
Y.
,
Endo
,
C. M.
, and
Akeson
,
W. H.
, 1983, “
Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation
,”
J. Orthop. Res.
0736-0266,
1
(
1
), pp.
22
29
.
9.
Yamamoto
,
K.
,
Hirokawa
,
S.
, and
Kawada
,
T.
, 1998, “
Strain Distribution in the Ligament Using Photoelasticity. A Direct Application to the Human ACL
,”
Med. Eng. Phys.
1350-4533,
20
(
3
), pp.
161
168
.
10.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.
, 1999, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
6
), pp.
657
662
.
11.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2003, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
0736-0266,
21
(
6
), pp.
1098
1106
.
12.
Panjabi
,
M. M.
,
Goel
,
V. K.
, and
Takata
,
K.
, 1982, “
Physiologic Strains in the Lumbar Spinal Ligaments. An In Vitro Biomechanical Study 1981 Volvo Award in Biomechanics
,”
Spine
0362-2436,
7
(
3
), pp.
192
203
.
13.
Blankevoort
,
L.
,
Huiskes
,
R.
, and de
Lange
,
A.
, 1991, “
Recruitment of Knee Joint Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
1
), pp.
94
103
.
14.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.
, 1993, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
26
(
4–5
), pp.
447
452
.
15.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N.
, and
Woo
,
S. L.
, 1994, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
0736-0266,
12
, pp.
796
803
.
16.
Martelli
,
S.
,
Joukhadar
,
A.
,
Zaffagnini
,
S.
,
Marcacci
,
M.
,
Lavallee
,
S.
, and
Champleboux
,
G.
, 1998, “
Fiber-Based Anterior Cruciate Ligament Model for Biomechanical Simulations
,”
J. Orthop. Res.
0736-0266,
16
(
3
), pp.
379
385
.
17.
Hirokawa
,
S.
, and
Tsuruno
,
R.
, 2000, “
Three-Dimensional Deformation and Stress Distribution in an Analytical/Computational Model of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
33
(
9
), pp.
1069
1077
.
18.
Green
,
W.
, and
Shi
,
J.
, 1991, “
Some Finite Deformations of Plane Elastic Networks
,”
AMD (Am. Soc. Mech. Eng.)
0160-8835,
124
, pp.
67
69
.
19.
Genensky
,
S.
, and
Rivlin
,
R.
, 1955, “
Infinitesimal Plane Strain in a Network of Elastic Cords
,”
J. Rational Mech. Anal.
,
4
, pp.
30
44
.
20.
Adkins
,
J.
, and
Rivlin
,
R.
, 1955, “
Large Elastic Deformations of Isotropic Materials X. Reinforcement by Inextensible Cords
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
248
, pp.
201
223
.
21.
Pipkin
,
A.
, 1980, “
Some Developments in the Theory of Inextensible Networks
,”
Q. Appl. Math.
0033-569X,
38
, pp.
343
355
.
22.
Rivlin
,
R.
, 1955, “
Plane Strain of a Net Formed by Inextensible Cords
,”
J. Rational Mech. Analysis
,
4
, pp.
951
974
.
23.
Rivlin
,
R.
, 1964, “
Networks of Inextensible Cords
,” in
Nonlinear Problems of Engineering
,
Academic
,
New York
, pp.
51
64
.
24.
Steigmann
,
D.
, 1990, “
Tension-Field Theory
,”
Proc. R. Soc. London, Ser. A
1364-5021,
429
, pp.
141
173
.
25.
Steigmann
,
D.
, 1991, “
Tension-Field Theories of Elastic Membranes and Networks
,”
AMD (Am. Soc. Mech. Eng.)
0160-8835,
124
, pp.
41
49
.
26.
Hotchkiss
,
R. N.
, 1994, “
Injuries to the Interosseous Ligament of the Forearm
,”
Hand Clin.
0749-0712,
10
(
3
), pp.
391
398
.
27.
Pfaeffle
,
H. J.
,
Fischer
,
K. J.
,
Manson
,
T. T.
,
Tomaino
,
M. M.
,
Woo
,
S. L.
, and
Herndon
,
J. H.
, 2000, “
Role of the Forearm Interosseous Ligament: Is it More Than Just Longitudinal Load Transfer?
,”
J. Hand Surg. [Am]
0363-5023,
25
(
4
), pp.
683
688
.
28.
Sowa
,
D. T.
,
Hotchkiss
,
R. N.
, and
Weiland
,
A. J.
, 1995, “
Symptomatic Proximal Translation of the Radius Following Radial Head Resection
,”
Clin. Orthop. Relat. Res.
0009-921X,
317
, pp.
106
113
.
29.
Ruch
,
D. S.
,
Change
,
D. S.
, and
Koman
,
L. A.
, 1999, “
Reconstruction of Longitudinal Stability of the Forearm After Disruption of Interosseous Ligament and Radial Head Excision (Essex-Lopresti Lesion)
,”
J. South Orthop. Assoc.
1059-1052,
8
(
1
), pp.
47
52
.
30.
Tomaino
,
M. M.
,
Pfaeffle
,
J.
,
Stabile
,
K.
, and
Li
,
Z. M.
, 2003, “
Reconstruction of the Interosseous Ligament of the Forearm Reduces Load on the Radial Head in Cadavers
,”
J. Hand Surg. [Br]
0266-7681,
28
(
3
), pp.
267
270
.
31.
Skahen
,
J. R.
, III
,
Palmer
,
A. K.
,
Werner
,
F. W.
, and
Fortino
,
M. D.
, 1997, “
The Interosseous Membrane of the Forearm: Anatomy and Function
,”
J. Hand Surg. [Am]
0363-5023,
22
(
6
), pp.
981
985
.
32.
Forster
,
R. I.
,
Sharkey
,
N. A.
, and
Szabo
,
R. M.
, 1999, “
Forearm Interosseous Ligament Isometry
,”
J. Hand Surg. [Am]
0363-5023,
24
(
3
), pp.
538
545
.
33.
Manson
,
T. T.
,
Pfaeffle
,
H. J.
,
Herdon
,
J. H.
,
Tomaino
,
M. M.
, and
Fischer
,
K. J.
, 2000, “
Forearm Rotation Alters Interosseous Ligament Strain Distribution
,”
J. Hand Surg. [Am]
0363-5023,
25
(
6
), pp.
1058
1063
.
34.
Pfaeffle
,
H. J.
,
Tomaino
,
M. M.
,
Grewal
,
R.
,
Xu
,
J.
,
Boardman
,
N. D.
,
Woo
,
S. L.
, and
Herndon
,
J. H.
, 1996, “
Tensile Properties of the Interosseous Membrane of the Human Forearm
,”
J. Orthop. Res.
0736-0266,
14
(
5
), pp.
842
845
.
35.
Fischer
,
K. J.
,
Manson
,
T. T.
,
Pfaeffle
,
H. J.
,
Tomaino
,
M. M.
, and
Woo
,
S. L.
, 2001, “
A Method for Measuring Joint Kinematics Designed for Accurate Registration of Kinematic Data to Models Constructed from CT Data
,”
J. Biomech.
0021-9290,
34
(
3
), pp.
377
383
.
36.
Pfaeffle
,
H. J.
,
Fischer
,
K. J.
,
Manson
,
T. T.
,
Tomaino
,
M. M.
,
Herndon
,
J. H.
, and
Woo
,
S. L.
, 1999, “
A New Methodology to Measure Load Transfer Through the Forearm Using Multiple Universal Force Sensors
,”
J. Biomech.
0021-9290,
32
(
12
), pp.
1331
1335
.
37.
Hotchkiss
,
R. N.
,
An
,
K. N.
,
Sowa
,
D. T.
,
Basta
,
S.
, and
Weiland
,
A. J.
, 1989, “
An Anatomic and Mechanical Study of the Interosseous Membrane of the Forearm: Pathomechanics of Proximal Migration of the Radius
,”
J. Hand Surg. [Am]
0363-5023,
14
, pp.
256
261
.
38.
McGinley
,
J. C.
, and
Kozin
,
S. H.
, 2001, “
Interossus Membrane Anatomy and Functional Mechanics
,”
Clin. Orthop. Relat. Res.
0009-921X,
383
, pp.
108
122
.
39.
Stabile
,
K. J.
,
Pfaeffle
,
J.
,
Weiss
,
J. A.
,
Fischer
,
K.
, and
Tomaino
,
M. M.
, 2004, “
Bi-directional Mechanical Properties of the Human Forearm Interosseous Ligament
,”
J. Orthop. Res.
0736-0266,
22
(
3
), pp.
607
612
.
You do not currently have access to this content.