Peptide modification of hydrogel-forming materials is being widely explored as a means to regulate the phenotype of cells immobilized within the gels. Alternatively, we hypothesized that the adhesive interactions between cells and peptides coupled to the gel-forming materials would also enhance the overall mechanical properties of the gels. To test this hypothesis, alginate polymers were modified with RGDSP-containing peptides and the resultant polymer was used to encapsulate C2C12 myoblasts. The mechanical properties of these gels were then assessed as a function of both peptide and cell density using compression and tensile tests. Overall, it was found that above a critical peptide and cell density, encapsulated myoblasts were able to provide additional mechanical integrity to hydrogels composed of peptide-modified alginate. This occurred presumably by means of cell-peptide cross-linking of the alginate polymers, in addition to the usual Ca++ cross-linking. These results are potentially applicable to other polymer systems and important for a range of tissue engineering applications.

1.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
0036-8075
260
, pp.
920
926
.
2.
Niklason
,
L. E.
, and
Langer
,
R.
, 2001, “
Prospects for Organ and Tissue Replacement
,”
JAMA, J. Am. Med. Assoc.
0098-7484
285
, pp.
573
576
.
3.
Lee
,
K. Y.
, and
Mooney
,
D. J.
, 2001, “
Hydrogels for Tissue Engineering
,”
Chem. Rev. (Washington, D.C.)
0009-2665
101
, pp.
1869
1877
.
4.
Yang
,
S.
,
Leong
,
K. F.
,
Du
,
Z.
, and
Chua
,
C. K.
, 2001, “
The Design of Scaffolds for Use in Tissue Engineering, Part I: Traditional Factors
,”
Tissue Eng.
1076-3279
7
, pp.
679
689
.
5.
Drury
,
J. L.
, and
Mooney
,
D. J.
, 2003, “
Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications
,”
Biomaterials
0142-9612
24
, pp.
4337
4351
.
6.
Mann
,
B. K.
,
Gobin
,
A. S.
,
Tsai
,
A. T.
,
Schmedlen
,
R. H.
, and
West
,
J. L.
, 2001, “
Smooth Muscle Growth in Photopolymerized Hydrogels With Cell Adhesive and Proteolytically Degradable Domains: Synthetic ECM Analogs for Tissue Engineering
,”
Biomaterials
0142-9612
22
, pp.
3045
3051
.
7.
Mann
,
B. K.
,
Schmedlen
,
R. H.
, and
West
,
J. L.
, 2001, “
Tethered-TGF-β Increases Extracellular Matrix Production of Vascular Smooth Muscle Cells
,”
Biomaterials
0142-9612
22
, pp.
439
444
.
8.
Rowley
,
J. A.
, and
Mooney
,
D. J.
, 2002, “
Alginate Type and RGD Density Control Myoblast Phenotype
,”
J. Biomed. Mater. Res.
0021-9304
60
, pp.
217
223
.
9.
Kong
,
H. J.
,
Smith
,
M. K.
, and
Mooney
,
D. J.
, 2003, “
Designing Alginate Hydrogels to Maintain Viability of Immobilized Cells
,”
Biomaterials
0142-9612
24
, pp.
4023
4029
.
10.
Alsberg
,
E.
,
Anderson
,
K. W.
,
Albeiruti
,
A.
,
Franceschi
,
R. T.
, and
Mooney
,
D. J.
, 2001, “
Cell-Interactive Alginate Hydrogels for Bone Tissue Engineering
,”
J. Dent. Res.
0022-0345
80
, pp.
2025
2029
.
11.
Alsberg
,
E.
,
Anderson
,
K. W.
,
Albeiruti
,
A.
,
Rowley
,
J. A.
, and
Mooney
,
D. J.
, 2002 “
Engineering Growing Tissues
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424
99
, pp.
12025
12030
.
12.
Loebsack
,
A.
,
Greene
,
K.
,
Wyatt
,
S.
,
Culberson
,
C.
,
Austin
,
C.
,
Beiler
,
R.
,
Roland
,
W.
,
Eiselt
,
P.
,
Rowley
,
J.
,
Burg
,
K.
,
Mooney
,
D.
,
Holder
,
W.
, and
Halberstadt
,
C.
, 2001, “
In vivo Characterization of a Porous Hydrogel Material for Use as a Tissue Bulking Agent
,”
J. Biomed. Mater. Res.
0021-9304
57
, pp.
575
581
.
13.
Alsberg
,
E.
,
Kong
,
H. J.
,
Hirano
,
Y.
,
Smith
,
M.
,
Albeiruti
,
A.
, and
Mooney
,
D. J.
, 2003, “
Regulating Bone Formation via Controlled Scaffold Degradation
,”
J. Dent. Res.
0022-0345
82
, pp.
903
908
.
14.
van der Flier
,
A.
, and
Sonnenberg
,
A.
, 2001, “
Function and Interaction of Integrins
,”
Cell Tissue Res.
0302-766X
305
, pp.
285
298
.
15.
Humphries
,
M. J.
,
McEwan
,
P. A.
,
Barton
,
S. J.
,
Buckley
,
P. A.
,
Bella
,
J.
, and
Mould
,
A. P.
, 2003, “
Integrin Structure: Heady Advances in Ligand Binding, but Activation Still Makes the Knees Wobble
,”
Trends Biochem. Sci.
0167-7640
28
, pp.
313
320
.
16.
Ruoslahti
,
E.
, 1996, “
RGD and Other Recognition Sequences for Integrins
,”
Annu. Rev. Cell Dev. Biol.
1081-0706
12
, pp.
697
715
.
17.
West
,
J. L.
, and
Hubbell
,
J. A.
, 1997, “
Bioactive Polymers
,” in:
Synthetic Biodegradable Polymer Scaffolds
,
A.
Atala
and
D. J.
,
Mooney
, eds.,
R.
Langer
and
J. P.
,
Vacanti
, assoc. eds.,
Birkhäuser
, Boston, pp.
83
95
.
18.
Smidsrød
,
O.
, and
Skjåk-Bræk
,
G.
, 1990, “
Alginate as Immobilization Matrix for Cells
,”
Trends Biotechnol.
0167-7799
8
, pp.
71
78
.
19.
Johnson
,
F. A.
,
Craig
,
D. Q. M.
, and
Mercer
,
A. D.
, 1997, “
Characterization of the Block Structure and Molecular Weight of Sodium Alginates
,”
J. Pharm. Pharmacol.
0373-1022
49
, pp.
639
643
.
20.
Draget
,
K. I.
,
Strand
,
B.
,
Hartmann
,
M.
,
Valla
,
S.
,
Smidsrød
,
O.
, and
Skjåk-Bræk
,
G.
, 2000, “
Ionic and Acid Gel Formation of Epimerised Alginates: The Effect of AlgE4
,”
Int. J. Biol. Macromol.
0141-8130
27
, pp.
117
122
.
21.
Atala
,
A.
,
Kim
,
W.
,
Paige
,
K. T.
,
Vacanti
,
C. A.
, and
Retik
,
A. B.
, 1994, “
Endoscopic Treatment of Vesicoureteral Reflux with a Chondrocyte-Alginate Suspension
,”
J. Urol. (Baltimore)
0022-5347
152
(
2
Pt 2), pp.
641
643
.
22.
Paige
,
K. T.
,
Cima
,
L. G.
,
Yaremchuk
,
M. J.
,
Vacanti
,
J. P.
, and
Vacanti
,
C. A.
, 1995, “
Injectable Cartilage
,”
Plast. Reconstr. Surg.
0032-1052
96
, pp.
1390
1398
.
23.
de Chalain
,
T.
,
Phillips
,
J. H.
, and
Hinek
,
A.
, 1999, “
Bioengineering of Elastic Cartilage with Aggregated Porcine and Human Auricular Chondrocytes and Hydrogels Containing Alginate, Collagen, and κ-Elastin
,”
J. Biomed. Mater. Res.
0021-9304
44
, pp.
280
288
.
24.
Suzuki
,
Y.
,
Tanihara
,
M.
,
Suzuki
,
K.
,
Saitou
,
A.
,
Sufan
,
W.
, and
Nishimura
,
Y.
, 2000, “
Alginate Hydrogel Linked With Synthetic Oligiopeptide Derived from BMP-2 Allows Ectopic Osteoinduction in vivo
,”
J. Biomed. Mater. Res.
0021-9304
50
, pp.
405
409
.
25.
Chang
,
S. C. N.
,
Rowley
,
J. A.
,
Tobias
,
G.
,
Genes
,
N. G.
,
Roy
,
A. K.
,
Mooney
,
D. J.
,
Vacanti
,
C. A.
, and
Bonassar
,
L. J.
, 2001, “
Injection Molding of Chondrocyte∕Alginate Constructs in the Shape of Facial Implants
,”
J. Biomed. Mater. Res.
0021-9304
55
, pp.
503
511
.
26.
Lee
,
K. Y.
,
Alsberg
,
E.
, and
Mooney
,
D. J.
, 2001, “
Degradable and Injectable Poly(Aldehyde Guluronate) Hydrogels for Bone Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304
56
, pp.
228
233
.
27.
Rowley
,
J. A.
,
Madlambayan
,
G.
, and
Mooney
,
D. J.
, 1999 “
Alginate Hydrogels as Synthetic Extracellular Matrix Materials
,”
Biomaterials
0142-9612
20
, pp.
45
53
.
28.
LeRoux
,
M. A.
,
Guilak
,
F.
, and
Setton
,
L. A.
, 1999, “
Compressive and Shear Properties of Alginate Gel: Effects of Sodium Ions and Alginate Concentration
,”
J. Biomed. Mater. Res.
0021-9304
47
, pp.
46
53
.
29.
Lee
,
K. Y.
,
Rowley
,
J. A.
,
Eiselt
,
P.
,
Moy
,
E. M.
,
Bouhadir
,
K. H.
, and
Mooney
,
D. J.
, 2000, “
Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-linker Type and Cross-Linking Density
,”
Macromolecules
0024-9297
33
, pp.
4291
4294
.
30.
Kong
,
H. J.
,
Lee
,
K. Y.
, and
Mooney
,
D. J.
, 2002, “
Decoupling the Dependence of Rheological∕Mechanical Properties of Hydrogels from Solid Concentration
,”
Polymer
0032-3861
43
, pp.
6239
6246
.
31.
Drury
,
J. L.
,
Dennis
,
R. G.
, and
Mooney
,
D. J.
, 2004, “
The Tensile Properties of Alginate Hydrogels
,”
Biomaterials
0142-9612
25
, pp.
3187
3199
.
32.
Draget
,
K. I.
,
Skjåk-Bræk
,
G.
, and
Smidsrød
,
O.
, 1997, “
Alginate Based New Materials
,”
Int. J. Biol. Macromol.
0141-8130
21
, pp.
47
55
.
33.
Bouhadir
,
K. H.
,
Hausman
,
D. S.
, and
Mooney
,
D. J.
, 1999, “
Synthesis of Cross-linked Poly(Aldehyde Guluronate) Hydrogels
,”
Polymer
0032-3861
40
, pp.
3575
3584
.
34.
Lee
,
K. Y.
,
Bouhadir
,
K. H.
, and
Mooney
,
D. J.
, 2000, “
Degradation Behavior of Covalently Cross-linked Poly(Aldehyde Guluronate) Hydrogels
,”
Macromolecules
0024-9297
33
, pp.
97
101
.
35.
Wang
,
L.
,
Shelton
,
R. M.
,
Cooper
,
P. R.
,
Lawson
,
M.
,
Triffitt
,
J. T.
, and
Barralet
,
J. E.
, 2003, “
Evaluation of Sodium Alginate for Bone Marrow Cell Tissue Engineering
,”
Biomaterials
0142-9612
24
, pp.
3475
3481
.
36.
Marler
,
J. J.
,
Guha
,
A.
,
Rowley
,
J.
,
Koka
,
R.
,
Mooney
,
D.
,
Upton
,
J.
, and
Vacanti
,
J. P.
, 2000, “
Soft-Tissue Augmentation with Injectable Alginate and Syngeneic Fibroblasts
,”
Plast. Reconstr. Surg.
0032-1052
105
, pp.
2049
2058
.
37.
Rowley
,
J. A.
,
Sun
,
Z.
,
Goldman
,
D.
, and
Mooney
,
D. J.
, 2002, “
Biomaterials to Spatially Regulate Cell Fate
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648
14
, pp.
886
889
.
38.
Gullberg
,
D.
,
Sjöberrg
,
G.
,
Velling
,
T.
, and
Sejersen
,
T.
, 1995, “
Analysis of Fibronectin and Vitronectin Receptors on Human Fetal Muscle Cells Upon Differentiation
,”
Exp. Cell Res.
0014-4827
220
, pp.
112
123
.
39.
Gullberg
,
D.
,
Tiger
,
C. -F.
, and
Velling
,
T.
, 1999, “
Laminins During Muscle Development and in Muscular Dystrophies
,”
Cell. Mol. Life Sci.
1420-682X
56
, pp.
442
460
.
40.
García
,
A. J.
,
Vega
,
M. D.
, and
Boettiger
,
D.
, 1999, “
Modulation of Cell Proliferation and Differentiation Through Substrate-Dependent Changes in Fibronectin Confirmation
,”
Mol. Biol. Cell
1059-1524
10
, pp.
785
798
.
41.
Eiselt
,
P.
,
Lee
,
K. Y.
, and
Mooney
,
D. J.
, 1999, “
Rigidity of Two-Component Hydrogels Prepared from Alginate and Poly(ethylene glycol)—Diamines
,”
Macromolecules
0024-9297
32
, pp.
5561
5566
.
42.
Lee
,
K. Y.
,
Kong
,
H. J.
,
Larson
,
R. G.
, and
Mooney
,
D. J.
, 2003, “
Hydrogel Formation Via Cell-Crosslinking
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648
21
,
1828
1832
.
43.
Grinnell
,
F.
, 2003, “
Fibroblast Biology in Three-Dimensional Collagen Matrices
,”
Trends Cell Biol.
0962-8924
13
, pp.
264
269
.
44.
Grinnell
,
F.
,
Ho
,
C. -H.
,
Lin
,
Y. -C.
, and
Skuta
,
G.
, 1999, “
Differences in the Regulation of Fibroblast Contraction of Floating Versus Stressed Collagen Matrices
,”
J. Biol. Chem.
0021-9258
274
, pp.
918
923
.
45.
Wang
,
H. -B.
,
Dembo
,
M.
, and
Wang
,
Y. -L.
, 2000, “
Substrate Flexibility Regulates Growth and Apoptosis of Normal but not Transformed Cells
,”
Am. J. Physiol.: Cell Physiol.
0363-6143
279
, pp.
C1345
C1350
.
46.
Knight
,
M. M.
,
van de Breevaart Bravenboer
,
J.
,
Lee
,
D. A.
,
van Osch
,
G. J. V. M.
,
Weinans
,
H.
,
Bader
,
D. L.
, 2002 “
Cell and Nucleus Deformation in Compressed Chondrocyte-Alginate Constructs: Temporal Changes and Calculation of Cell Modulus
,”
Biochim. Biophys. Acta
0006-3002
1570
, pp.
1
8
.
47.
Miyazaki
,
H.
,
Hasegawa
,
Y.
, and
Hayashi
,
K.
, 2000, “
A Newly Designed Tensile Tester for Cells and Its Application to Fibroblasts
,”
J. Biomech.
0021-9290
33
, pp.
97
104
.
48.
Missirlis
,
Y. F.
and
Spiliotis
,
A. D.
, 2002, “
Assessment of Techniques Used in Calculating Cell-Material Interactions
,”
Biomol. Eng.
1389-0344
19
, pp.
287
294
.
49.
Prechtel
,
K.
,
Bausch
,
A. R.
,
Marchi-Artzner
,
V.
,
Kantlehner
,
M.
,
Kessler
,
H.
, and
Merkel
,
R.
, 2002, “
Dynamic Force Spectroscopy to Probe Adhesion Strength of Living Cells
,”
Phys. Rev. Lett.
0031-9007
89
, pp.
028101
028104
.
50.
Oliver
,
T.
,
Lee
,
J.
, and
Jacobson
,
K.
, 1994, “
Forces Exerted by Locomoting Cells
,”
Semin. Cell Biol.
1043-4682
5
, pp.
139
147
.
51.
Wang
,
N.
,
Ostuni
,
E.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
, 2002, “
Micropatterning Traction Forces in Living Cells
,”
Cell Motil. Cytoskeleton
0886-1544
52
, pp.
97
106
.
52.
Koo
,
L. Y.
,
Irvine
,
D. J.
,
Mayes
,
A. M.
,
Lauffenburger
,
D. A.
, and
Griffith
,
L. G.
, 2002, “
Co-Regulation of Cell Adhesion by Nanoscale RGD Organization and Mechanical Stimulus
.
J. Cell. Sci.
0021-9533
115
, pp.
1423
1433
.
53.
Palecek
,
S. P.
,
Loftus
,
J. C.
,
Ginsberg
,
M. H.
,
Lauffenburger
,
D. A.
, and
Horwitz
,
A. F.
, 1997, “
Integrin-Ligand Binding Properties Govern Cell Migration Speed Through Cell-Substratum Adhesiveness
,”
Nature (London)
0028-0836
385
, pp.
537
540
.
54.
Takamizawa
,
K.
,
Shoda
,
K.
, and
Matsuda
,
T.
, 2002 “
Pull-Out Mechanical Measurement of Tissue-Substrate Adhesive Strength: Endothelial Cell Monolayer Sheet Formed on a Thermoresponsive Gelatin Layer
,”
J. Biomater. Sci., Polym. Ed.
0920-5063
13
, pp.
81
94
.
55.
Lauffenburger
,
D. A.
and
Wells
.
A.
, 2001, “
Getting a Grip: New Insights for Cell Adhesion and Traction
,”
Nat. Cell Biol.
1465-7392
3
, pp.
E110
E112
.
56.
Reinhart-King
,
C. A.
,
Dembo
,
M.
, and
Hammer
,
D. A.
, 2003, “
Endothelial Cell Traction Forces on RGD-Derivatized Polyacrylamide Substrata
,”
Langmuir
0743-7463
19
, pp.
1573
1579
.
57.
García
,
A. J.
,
Huber
,
F.
, and
Boettiger
,
D.
, 1998, “
Force Required to Break α5β1 Integrin-Fibronectin Bonds in Intact Adherent Cells is Sensitive to Integrin Activation State
,”
J. Biol. Chem.
0021-9258
273
, pp.
10988
10993
.
58.
García
,
A. J.
,
Schwarzbauer
,
J. E.
, and
Boettiger
,
D.
, 2002, “
Distinct Activation States of α5β1 Integrin Show Differential Binding to RGD and Synergy Domains of Fibronectin
,”
Biochemistry
0006-2960
41
, pp.
9063
9069
.
59.
Bell
,
G. I.
, 1978, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
0036-8075
200
, pp.
618
627
.
60.
Maheshwari
,
G.
,
Brown
,
G.
,
Lauffenburger
,
D. A.
,
Wells
,
A.
, and
Griffith
,
L. G.
, 2000, “
Cell Adhesion and Motility Depend on Nanoscale RGD Clustering
,”
J. Cell. Sci.
0021-9533
113
, pp.
1677
1686
.
You do not currently have access to this content.