In human voice production (phonation), linear small-amplitude vocal fold oscillation occurs only under restricted conditions. Physiologically, phonation more often involves large-amplitude oscillation associated with tissue stresses and strains beyond their linear viscoelastic limits, particularly in the lamina propria extracellular matrix (ECM). This study reports some preliminary measurements of tissue deformation and failure response of the vocal fold ECM under large-strain shear. The primary goal was to formulate and test a novel constitutive model for vocal fold tissue failure, based on a standard-linear cohesive-zone (SL-CZ) approach. Tissue specimens of the sheep vocal fold mucosa were subjected to torsional deformation in vitro, at constant strain rates corresponding to twist rates of 0.01, 0.1, and 1.0 rad/s. The vocal fold ECM demonstrated nonlinear stress-strain and rate-dependent failure response with a failure strain as low as 0.40 rad. A finite-element implementation of the SL-CZ model was capable of capturing the rate dependence in these preliminary data, demonstrating the model’s potential for describing tissue failure. Further studies with additional tissue specimens and model improvements are needed to better understand vocal fold tissue failure.

1.
Hirano, M., 1977, “Structure and vibratory behavior of the vocal folds,” In M. Sawashima and F. S. Cooper (eds.) Dynamic aspects of speech production, Tokyo, Japan: University of Tokyo Press, pp. 13–30.
2.
Gray
,
S. D.
,
Titze
,
I. R.
,
Alipour
,
F.
, and
Hammond
,
T. H.
,
2000
, “
Biomechanical and histologic observations of vocal fold fibrous proteins
,”
Ann. Otol. Rhinol. Laryngol.
,
109
, pp.
77
85
.
3.
Gray
,
S. D.
,
Titze
,
I. R.
,
Chan
,
R.
, and
Hammond
,
T. H.
,
1999
, “
Vocal fold proteoglycans and their influence on biomechanics
,”
Laryngoscope
,
109
, pp.
845
854
.
4.
Fung, Y. C., 1993, “Biomechanics,” Mechanical properties of living tissues, (2nd edn.) New York: Springer-Verlag.
5.
Alipour-Haghighi
,
F.
, and
Titze
,
I. R.
,
1991
, “
Elastic models of vocal fold tissues
,”
J. Acoust. Soc. Am.
,
90
, pp.
1326
1331
.
6.
Min
,
Y. B.
,
Titze
,
I. R.
, and
Alipour-Haghighi
,
F.
,
1995
, “
Stress-strain response of the human vocal ligament
,”
Ann. Otol. Rhinol. Laryngol.
,
104
, pp.
563
569
.
7.
Titze, I. R., 1994, “Principles of voice production,” Englewood Cliffs, NJ: Prentice-Hall.
8.
Titze
,
I. R.
,
1994
, “
Mechanical stress in phonation
,”
J. Voice
,
8
, pp.
99
105
.
9.
Chan
,
R. W.
, and
Titze
,
I. R.
,
1999
, “
Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results
,”
J. Acoust. Soc. Am.
,
106
, pp.
2008
2021
.
10.
Chan
,
R. W.
, and
Titze
,
I. R.
,
2000
, “
Viscoelastic shear properties of human vocal fold mucosa: Theoretical characterization based on constitutive modeling
,”
J. Acoust. Soc. Am.
,
107
, pp.
565
580
.
11.
Chan
,
R. W.
,
2004
, “
Measurements of vocal fold tissue viscoelasticity: Approaching the male phonatory frequency range
,”
J. Acoust. Soc. Am.
,
115
,
3161
3170
.
12.
Stathopoulos
,
E. T.
, and
Sapienza
,
C.
,
1993
, “
Respiratory and laryngeal function of women and men during vocal intensity variation
,”
J. Speech Hear. Res.
,
36
, pp.
64
75
.
13.
Stathopoulos
,
E. T.
, and
Sapienza
,
C. M.
,
1997
, “
Developmental changes in laryngeal and respiratory function with variations in sound pressure level
,”
J. Speech Lang. Hear. Res.
,
40
, pp.
595
614
.
14.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
,
I. R.
,
2000
, “
A finite element model of vocal fold vibration
,”
J. Acoust. Soc. Am.
,
108
, pp.
3003
3012
.
15.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Story
,
B. H.
,
1996
, “
Bifurcations in excised larynx experiments
,”
J. Voice
,
10
, pp.
129
138
.
16.
Colton, R. H., and Casper, J. K., 1996, “Understanding voice problems: A physiological perspective for diagnosis and treatment,” (2nd edn.) Philadelphia: Lippincott-Williams & Wilkins.
17.
Zeitels
,
S. M.
,
Hillman
,
R. E.
,
Bunting
,
G. W.
, and
Vaughn
,
T.
,
1997
, “
Reinke’s edema: phonatory mechanisms and management strategies
,”
Ann. Otol. Rhinol. Laryngol.
,
106
, pp.
533
543
.
18.
Dugdale
,
D. S.
,
1960
, “
Yielding in steel sheets containing slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
104
.
19.
Barenblatt
,
G. I.
,
1962
, “
The mathematical theory of equilibrium cracks in brittle fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
20.
Needleman
,
A.
,
1990
, “
An analysis of decohesion along an imperfect interface
,”
Int. J. Fract.
,
42
, pp.
21
40
.
21.
Zrunek
,
M.
,
Happak
,
W.
,
Hermann
,
M.
, and
Streinzer
,
W.
,
1988
, “
Comparative anatomy of human and sheep laryngeal skeleton
,”
Acta Oto-Laryngol.
,
105
, pp.
155
162
.
22.
Alipour, F., and Montequin, D., 2002, “Comparative aerodynamics of canine, sheep and pig larynges. Paper presented at the Voice Foundation’s 31st Annual Symposium: Care of the Professional Voice,” Philadelphia, PA, June 5–9.
23.
Kramer
,
E. J.
, and
Berger
,
L. L.
,
1990
, “
Fundamental processes of craze growth and fracture
,”
Adv. Polym. Sci.
,
91/92
, pp.
1
68
.
24.
Siegmund
,
T.
, and
Brocks
,
W.
,
1998
, “
Local fracture criteria: length scales and applications
,”
J. de Physique IV France
,
8
, pp.
349
356
.
25.
Roe
,
K. L.
, and
Siegmund
,
T.
,
2003
, “
An irreversible cohesive zone model for interface fatigue crack growth simulation
,”
Eng. Fract. Mech.
,
70
, pp.
209
232
.
26.
Xu
,
C.
,
Siegmund
,
T.
, and
Ramani
,
K.
,
2003
, “
Rate dependent crack growth in adhesives, I: Modeling approach
,”
Intl. J. Adhesion Adhesives
,
23
, pp.
9
13
.
27.
Xu
,
C.
,
Siegmund
,
T.
, and
Ramani
,
K.
,
2003
, “
Rate-dependent crack growth in adhesives, II: Experiments and analysis
,”
Intl. J. Adhesion Adhesives
,
23
, pp.
15
22
.
28.
Titze
,
I. R.
,
1988
, “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
,
83
, pp.
1536
1552
.
29.
Baken R. J., and Orlikoff, R. F., 2000, “Clinical measurement of speech and voice,” (2nd edn.) San Diego, CA: Singular-Thomson Learning.
30.
Tayama
,
N.
,
Chan
,
R. W.
,
Kaga
,
K.
, and
Titze
,
I. R.
,
2002
, “
Functional definitions of vocal fold geometry for laryngeal biomechanical modeling
,”
Ann. Otol. Rhinol. Laryngol.
,
111
, pp.
83
92
.
31.
Titze
,
I. R.
,
Sˇvec
,
J. G.
, and
Popolo
,
P. S.
,
2003
, “
Vocal dose measures: Quantifying accumulated vibration exposure in vocal fold tissues
,”
J. Speech Lang. Hear. Res.
,
46
, pp.
919
932
.
32.
Chan
,
R. W.
,
Gray
,
S. D.
, and
Titze
,
I. R.
,
2001
, “
The importance of hyaluronic acid in vocal fold biomechanics
,”
Otolaryngol.-Head Neck Sug.
124
, pp.
607
614
.
33.
Bergstro¨m
,
J. S.
, and
Boyce
,
M. C.
,
2001
, “
Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues
,”
Mech. Mater.
,
33
, pp.
523
530
.
34.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional calculus—A different approach to the analysis of viscoelastically damped structures
,”
J. Am. Inst. Aero. Astro.
,
2
, pp.
741
748
.
You do not currently have access to this content.