Models of muscle crossbridge dynamics have great potential for understanding muscle contraction and having a wide range of application. However, the estimation of many model parameters, most of which are difficult to measure, limits their applicability. This study developed a method of estimating parameters in the Distribution Moment crossbridge model from measurements of force-length and force-velocity relationships in cat soleus single muscle fibers. Analysis of the parameter estimates showed that the detachment rate parameters had more uncertainty than the attachment rate parameter, which could reflect physiological variations in the contractile protein content and in the response of muscle to lengthenings.

1.
Sandercock, T. G., Lin, D. C., and Rymer, W. Z., “Muscle Models,” in Handbook of Brain Theory and Neural Networks, M. A. Arbib, Editor. In press.
2.
Riener
,
R.
,
1999
, “
Model-Based Development of Neuroprosthesis for Paraplegic Patients
,”
Philos. Trans. R. Soc. London
,
354
(
1385
), pp.
877
894
.
3.
Pette
,
D.
, and
Staron
,
R. S.
,
2000
, “
Myosin Isoforms, Muscle Fiber Types, and Transitions
,”
Microsc. Res. Tech.
,
50
(
6
), pp.
500
509
.
4.
Morgan
,
D. L.
, and
Allen
,
D. G.
,
1999
, “
Early Events in Stretch-Induced Muscle Damage
,”
J. Appl. Physiol.
,
87
(
6
), pp.
2007
2015
.
5.
Brown
,
I. E.
,
Scott
,
S. H.
, and
Loeb
,
G. E.
,
1996
, “
Mechanics of Feline Soleus: II. Design and Validation of a Mathematical Model
,”
J. Muscle Res. Cell Motil.
,
17
(
2
), pp.
221
233
.
6.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
7.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London
,
126
, pp.
136
195
.
8.
Iwamoto
,
H.
,
Sugaya
,
R.
, and
Sugi
,
H.
,
1990
, “
Force-Velocity Relation of Frog Skeletal Muscle Fibres Shortening under Continuously Changing Load
,”
J. Physiol. (London)
,
422
, pp.
185
202
.
9.
Talmadge
,
R. J.
,
Grossman
,
E. J.
, and
Roy
,
R. R.
,
1996
, “
Myosin Heavy Chain Composition of Adult Feline (Felis Catus) Limb and Diaphragm Muscles
,”
J. Exp. Zool.
,
275
(
6
), pp.
413
420
.
10.
Malamud
,
J. G.
,
Godt
,
R. E.
, and
Nichols
,
T. R.
,
1996
, “
Relationship between Short-Range Stiffness and Yielding in Type-Identified, Chemically Skinned Muscle Fibers from the Cat Triceps Surae Muscles
,”
J. Neurophysiol.
,
76
(
4
), pp.
2280
2289
.
11.
Godt
,
R. E.
, and
Nosek
,
T. M.
,
1989
, “
Changes of Intracellular Milieu with Fatigue or Hypoxia Depress Contraction of Skinned Rabbit Skeletal and Cardiac Muscle
,”
J. Physiol. (London)
,
412
, pp.
155
180
.
12.
Scott
,
S. H.
,
Brown
,
I. E.
, and
Loeb
,
G. E.
,
1996
, “
Mechanics of Feline Soleus: I. Effect of Fascicle Length and Velocity on Force Output
,”
J. Muscle Res. Cell Motil.
,
17
(
2
), pp.
207
219
.
13.
Mashima
,
H.
,
Akazawa
,
K.
,
Kushima
,
H.
, and
Fujii
,
K.
,
1972
, “
The Force-Load-Velocity Relation and the Viscous-Like Force in the Frog Skeletal Muscle
,”
Jpn. J. Physiol.
,
22
(
1
), pp.
103
120
.
14.
Huxley
,
A. F.
,
1957
, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Biophys. Chem.
,
7
, pp.
257
318
.
15.
Zahalak
,
G. I.
, and
Ma
,
S. P.
,
1990
, “
Muscle Activation and Contraction: Constitutive Relations Based Directly on Cross-Bridge Kinetics
,”
ASME J. Biomech. Eng.
,
112
(
1
), pp.
52
62
.
16.
Zahalak
,
G. I.
,
1981
, “
A Distribution-Moment Approximation for Kinetic Theories of Muscular Contraction
,”
Math. Biosci.
,
55
, pp.
89
114
.
17.
Ma
,
S. P.
, and
Zahalak
,
G. I.
,
1991
, “
A Distribution-Moment Model of Energetics in Skeletal Muscle
,”
J. Biomech.
,
24
(
1
), pp.
21
35
.
18.
Brown
,
I. E.
, and
Loeb
,
G. E.
,
1999
, “
Measured and Modeled Properties of Mammalian Skeletal Muscle. I. The Effects of Post-Activation Potentiation on the Time Course and Velocity Dependencies of Force Production
,”
J. Muscle Res. Cell Motil.
,
20
(
5–6
), pp.
443
456
.
19.
Joyce
,
G. C.
,
Rack
,
P. M.
, and
Westbury
,
D. R.
,
1969
, “
The Mechanical Properties of Cat Soleus Muscle During Controlled Lengthening and Shortening Movements
,”
J. Physiol. (London)
,
204
(
2
), pp.
461
474
.
20.
Manly, B. F. J., 1997, Randomization, Bootstrap, and Monte Carlo Methods in Biology, Chapman and Hall, London.
21.
Morgan
,
D. L.
,
1990
, “
New Insights into the Behavior of Muscle During Active Lengthening
,”
Biophys. J.
,
57
(
2
), pp.
209
221
.
22.
Herzog
,
W.
, and
Leonard
,
T. R.
,
2000
, “
The History Dependence of Force Production in Mammalian Skeletal Muscle Following Stretch-Shortening and Shortening-Stretch Cycles
,”
J. Biomech.
,
33
(
5
), pp.
531
542
.
23.
Rassier
,
D. E.
,
MacIntosh
,
B. R.
, and
Herzog
,
W.
,
1999
, “
Length Dependence of Active Force Production in Skeletal Muscle
,”
J. Appl. Physiol.
,
86
(
5
), pp.
1445
1457
.
24.
Edman
,
K. A.
,
Caputo
,
C.
, and
Lou
,
F.
,
1993
, “
Depression of Tetanic Force Induced by Loaded Shortening of Frog Muscle Fibres
,”
J. Physiol. (London)
,
466
, pp.
535
552
.
25.
Edman
,
K. A.
, and
Tsuchiya
,
T.
,
1996
, “
Strain of Passive Elements During Force Enhancement by Stretch in Frog Muscle Fibres
,”
J. Physiol. (London)
,
490
(
Pt 1
), pp.
191
205
.
26.
Woledge
,
R. C.
,
Curtin
,
N. A.
, and
Homsher
,
E.
,
1985
, “
Energetic Aspects of Muscle Contraction
,”
Monogr. Physiol. Soc.
,
41
, pp.
1
357
.
27.
Spector
,
S. A.
,
Gardiner
,
P. F.
,
Zernicke
,
R. F.
,
Roy
,
R. R.
, and
Edgerton
,
V. R.
,
1980
, “
Muscle Architecture and Force-Velocity Characteristics of Cat Soleus and Medial Gastrocnemius: Implications for Motor Control
,”
J. Neurophysiol.
,
44
(
5
), pp.
951
960
.
28.
Sandercock
,
T. G.
, and
Heckman
,
C. J.
,
1997
, “
Force from Cat Soleus Muscle During Imposed Locomotor-Like Movements: Experimental Data Versus Hill-Type Model Predictions
,”
J. Neurophysiol.
,
77
(
3
), pp.
1538
1552
.
29.
Widrick
,
J. J.
,
Romatowski
,
J. G.
,
Karhanek
,
M.
, and
Fitts
,
R. H.
,
1997
, “
Contractile Properties of Rat, Rhesus Monkey, and Human Type I Muscle Fibers
,”
Am. J. Physiol.
,
272
(
1 Pt 2
), pp.
34
42
.
30.
Galler
,
S.
,
Schmitt
,
T. L.
, and
Pette
,
D.
,
1994
, “
Stretch Activation, Unloaded Shortening Velocity and Myosin Heavy Chain Isoforms of Rat Skeletal Muscle Fibres
,”
J. Physiol. (London)
,
478
(
Pt 3
), pp.
513
521
.
31.
Fitts
,
R. H.
, and
Widrick
,
J. J.
,
1996
, “
Muscle Mechanics: Adaptations with Exercise-Training
,”
Exerc Sport Sci. Rev.
,
24
, pp.
427
473
.
32.
Stienen
,
G. J.
,
Versteeg
,
P. G.
,
Papp
,
Z.
, and
Elzinga
,
G.
,
1992
, “
Mechanical Properties of Skinned Rabbit Psoas and Soleus Muscle Fibres During Lengthening: Effects of Phosphate and Ca2+,
J. Physiol. (London)
,
451
, pp.
503
523
.
33.
Cole
,
G. K.
,
van den Bogert
,
A. J.
,
Herzog
,
W.
, and
Gerritsen
,
K. G.
,
1996
, “
Modelling of Force Production in Skeletal Muscle Undergoing Stretch
,”
J. Biomech.
,
29
(
8
), pp.
1091
1104
.
34.
Potma
,
E. J.
,
van Graas
,
I. A.
, and
Stienen
,
G. J.
,
1994
, “
Effects of pH on Myofibrillar Atpase Activity in Fast and Slow Skeletal Muscle Fibers of the Rabbit
,”
Biophys. J.
,
67
(
6
), pp.
2404
2410
.
35.
Reggiani
,
C.
,
Potma
,
E. J.
,
Bottinelli
,
R.
,
Canepari
,
M.
,
Pellegrino
,
M. A.
, and
Stienen
,
G. J.
,
1997
, “
Chemo-Mechanical Energy Transduction in Relation to Myosin Isoform Composition in Skeletal Muscle Fibres of the Rat
,”
J. Physiol. (London)
,
502
(
Pt 2
), pp.
449
460
.
36.
Zahalak
,
G. I.
,
1986
, “
A Comparison of the Mechanical Behavior of the Cat Soleus Muscle with a Distribution-Moment Model
,”
J. Biomech. Eng.
,
108
(
2
), pp.
131
140
.
37.
Lin
,
D. C.
, and
Rymer
,
W. Z.
,
1993
, “
Mechanical Properties of Cat Soleus Muscle Elicited by Sequential Ramp Stretches: Implications for Control of Muscle
,”
J. Clin. Neurophysiol.
,
70
(
3
), pp.
997
1008
.
38.
Harry
,
J. D.
,
Ward
,
A. W.
,
Heglund
,
N. C.
,
Morgan
,
D. L.
, and
McMahon
,
T. A.
,
1990
, “
Cross-Bridge Cycling Theories Cannot Explain High-Speed Lengthening Behavior in Frog Muscle
,”
Biophys. J.
,
57
(
2
), pp.
201
208
.
39.
Brenner
,
B.
,
1986
, “
The Cross-Bridge Cycle in Muscle. Mechanical, Biochemical, and Structural Studies on Single Skinned Rabbit Psoas Fibers to Characterize Cross-Bridge Kinetics in Muscle for Correlation with the Actomyosin-Atpase in Solution
,”
Basic Res. Cardiol.
,
81
(
Supplement 1
), pp.
1
15
.
40.
Getz
,
E. B.
,
Cooke
,
R.
, and
Lehman
,
S. L.
,
1998
, “
Phase Transition in Force During Ramp Stretches of Skeletal Muscle
,”
Biophys. J.
,
75
(
6
), pp.
2971
2983
.
41.
Huxley
,
A. F.
, and
Simmons
,
R. M.
,
1971
, “
Proposed Mechanism of Force Generation in Striated Muscle
,”
Nature (London)
,
233
(
5321
), pp.
533
538
.
42.
Campbell
,
K. S.
, and
Moss
,
R. L.
,
2000
, “
A Thixotropic Effect in Contracting Rabbit Psoas Muscle: Prior Movement Reduces the Initial Tension Response to Stretch
,”
J. Physiol. (London)
,
525
(
Pt 2
), pp.
531
548
.
You do not currently have access to this content.