Models of muscle crossbridge dynamics have great potential for understanding muscle contraction and having a wide range of application. However, the estimation of many model parameters, most of which are difficult to measure, limits their applicability. This study developed a method of estimating parameters in the Distribution Moment crossbridge model from measurements of force-length and force-velocity relationships in cat soleus single muscle fibers. Analysis of the parameter estimates showed that the detachment rate parameters had more uncertainty than the attachment rate parameter, which could reflect physiological variations in the contractile protein content and in the response of muscle to lengthenings.
Issue Section:
Modeling
1.
Sandercock, T. G., Lin, D. C., and Rymer, W. Z., “Muscle Models,” in Handbook of Brain Theory and Neural Networks, M. A. Arbib, Editor. In press.
2.
Riener
, R.
, 1999
, “Model-Based Development of Neuroprosthesis for Paraplegic Patients
,” Philos. Trans. R. Soc. London
, 354
(1385
), pp. 877
–894
.3.
Pette
, D.
, and Staron
, R. S.
, 2000
, “Myosin Isoforms, Muscle Fiber Types, and Transitions
,” Microsc. Res. Tech.
, 50
(6
), pp. 500
–509
.4.
Morgan
, D. L.
, and Allen
, D. G.
, 1999
, “Early Events in Stretch-Induced Muscle Damage
,” J. Appl. Physiol.
, 87
(6
), pp. 2007
–2015
.5.
Brown
, I. E.
, Scott
, S. H.
, and Loeb
, G. E.
, 1996
, “Mechanics of Feline Soleus: II. Design and Validation of a Mathematical Model
,” J. Muscle Res. Cell Motil.
, 17
(2
), pp. 221
–233
.6.
Zajac
, F. E.
, 1989
, “Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,” Crit. Rev. Biomed. Eng.
, 17
(4
), pp. 359
–411
.7.
Hill
, A. V.
, 1938
, “The Heat of Shortening and the Dynamic Constants of Muscle
,” Proc. R. Soc. London
, 126
, pp. 136
–195
.8.
Iwamoto
, H.
, Sugaya
, R.
, and Sugi
, H.
, 1990
, “Force-Velocity Relation of Frog Skeletal Muscle Fibres Shortening under Continuously Changing Load
,” J. Physiol. (London)
, 422
, pp. 185
–202
.9.
Talmadge
, R. J.
, Grossman
, E. J.
, and Roy
, R. R.
, 1996
, “Myosin Heavy Chain Composition of Adult Feline (Felis Catus) Limb and Diaphragm Muscles
,” J. Exp. Zool.
, 275
(6
), pp. 413
–420
.10.
Malamud
, J. G.
, Godt
, R. E.
, and Nichols
, T. R.
, 1996
, “Relationship between Short-Range Stiffness and Yielding in Type-Identified, Chemically Skinned Muscle Fibers from the Cat Triceps Surae Muscles
,” J. Neurophysiol.
, 76
(4
), pp. 2280
–2289
.11.
Godt
, R. E.
, and Nosek
, T. M.
, 1989
, “Changes of Intracellular Milieu with Fatigue or Hypoxia Depress Contraction of Skinned Rabbit Skeletal and Cardiac Muscle
,” J. Physiol. (London)
, 412
, pp. 155
–180
.12.
Scott
, S. H.
, Brown
, I. E.
, and Loeb
, G. E.
, 1996
, “Mechanics of Feline Soleus: I. Effect of Fascicle Length and Velocity on Force Output
,” J. Muscle Res. Cell Motil.
, 17
(2
), pp. 207
–219
.13.
Mashima
, H.
, Akazawa
, K.
, Kushima
, H.
, and Fujii
, K.
, 1972
, “The Force-Load-Velocity Relation and the Viscous-Like Force in the Frog Skeletal Muscle
,” Jpn. J. Physiol.
, 22
(1
), pp. 103
–120
.14.
Huxley
, A. F.
, 1957
, “Muscle Structure and Theories of Contraction
,” Prog. Biophys. Biophys. Chem.
, 7
, pp. 257
–318
.15.
Zahalak
, G. I.
, and Ma
, S. P.
, 1990
, “Muscle Activation and Contraction: Constitutive Relations Based Directly on Cross-Bridge Kinetics
,” ASME J. Biomech. Eng.
, 112
(1
), pp. 52
–62
.16.
Zahalak
, G. I.
, 1981
, “A Distribution-Moment Approximation for Kinetic Theories of Muscular Contraction
,” Math. Biosci.
, 55
, pp. 89
–114
.17.
Ma
, S. P.
, and Zahalak
, G. I.
, 1991
, “A Distribution-Moment Model of Energetics in Skeletal Muscle
,” J. Biomech.
, 24
(1
), pp. 21
–35
.18.
Brown
, I. E.
, and Loeb
, G. E.
, 1999
, “Measured and Modeled Properties of Mammalian Skeletal Muscle. I. The Effects of Post-Activation Potentiation on the Time Course and Velocity Dependencies of Force Production
,” J. Muscle Res. Cell Motil.
, 20
(5–6
), pp. 443
–456
.19.
Joyce
, G. C.
, Rack
, P. M.
, and Westbury
, D. R.
, 1969
, “The Mechanical Properties of Cat Soleus Muscle During Controlled Lengthening and Shortening Movements
,” J. Physiol. (London)
, 204
(2
), pp. 461
–474
.20.
Manly, B. F. J., 1997, Randomization, Bootstrap, and Monte Carlo Methods in Biology, Chapman and Hall, London.
21.
Morgan
, D. L.
, 1990
, “New Insights into the Behavior of Muscle During Active Lengthening
,” Biophys. J.
, 57
(2
), pp. 209
–221
.22.
Herzog
, W.
, and Leonard
, T. R.
, 2000
, “The History Dependence of Force Production in Mammalian Skeletal Muscle Following Stretch-Shortening and Shortening-Stretch Cycles
,” J. Biomech.
, 33
(5
), pp. 531
–542
.23.
Rassier
, D. E.
, MacIntosh
, B. R.
, and Herzog
, W.
, 1999
, “Length Dependence of Active Force Production in Skeletal Muscle
,” J. Appl. Physiol.
, 86
(5
), pp. 1445
–1457
.24.
Edman
, K. A.
, Caputo
, C.
, and Lou
, F.
, 1993
, “Depression of Tetanic Force Induced by Loaded Shortening of Frog Muscle Fibres
,” J. Physiol. (London)
, 466
, pp. 535
–552
.25.
Edman
, K. A.
, and Tsuchiya
, T.
, 1996
, “Strain of Passive Elements During Force Enhancement by Stretch in Frog Muscle Fibres
,” J. Physiol. (London)
, 490
(Pt 1
), pp. 191
–205
.26.
Woledge
, R. C.
, Curtin
, N. A.
, and Homsher
, E.
, 1985
, “Energetic Aspects of Muscle Contraction
,” Monogr. Physiol. Soc.
, 41
, pp. 1
–357
.27.
Spector
, S. A.
, Gardiner
, P. F.
, Zernicke
, R. F.
, Roy
, R. R.
, and Edgerton
, V. R.
, 1980
, “Muscle Architecture and Force-Velocity Characteristics of Cat Soleus and Medial Gastrocnemius: Implications for Motor Control
,” J. Neurophysiol.
, 44
(5
), pp. 951
–960
.28.
Sandercock
, T. G.
, and Heckman
, C. J.
, 1997
, “Force from Cat Soleus Muscle During Imposed Locomotor-Like Movements: Experimental Data Versus Hill-Type Model Predictions
,” J. Neurophysiol.
, 77
(3
), pp. 1538
–1552
.29.
Widrick
, J. J.
, Romatowski
, J. G.
, Karhanek
, M.
, and Fitts
, R. H.
, 1997
, “Contractile Properties of Rat, Rhesus Monkey, and Human Type I Muscle Fibers
,” Am. J. Physiol.
, 272
(1 Pt 2
), pp. 34
–42
.30.
Galler
, S.
, Schmitt
, T. L.
, and Pette
, D.
, 1994
, “Stretch Activation, Unloaded Shortening Velocity and Myosin Heavy Chain Isoforms of Rat Skeletal Muscle Fibres
,” J. Physiol. (London)
, 478
(Pt 3
), pp. 513
–521
.31.
Fitts
, R. H.
, and Widrick
, J. J.
, 1996
, “Muscle Mechanics: Adaptations with Exercise-Training
,” Exerc Sport Sci. Rev.
, 24
, pp. 427
–473
.32.
Stienen
, G. J.
, Versteeg
, P. G.
, Papp
, Z.
, and Elzinga
, G.
, 1992
, “Mechanical Properties of Skinned Rabbit Psoas and Soleus Muscle Fibres During Lengthening: Effects of Phosphate and Ca2+,
” J. Physiol. (London)
, 451
, pp. 503
–523
.33.
Cole
, G. K.
, van den Bogert
, A. J.
, Herzog
, W.
, and Gerritsen
, K. G.
, 1996
, “Modelling of Force Production in Skeletal Muscle Undergoing Stretch
,” J. Biomech.
, 29
(8
), pp. 1091
–1104
.34.
Potma
, E. J.
, van Graas
, I. A.
, and Stienen
, G. J.
, 1994
, “Effects of pH on Myofibrillar Atpase Activity in Fast and Slow Skeletal Muscle Fibers of the Rabbit
,” Biophys. J.
, 67
(6
), pp. 2404
–2410
.35.
Reggiani
, C.
, Potma
, E. J.
, Bottinelli
, R.
, Canepari
, M.
, Pellegrino
, M. A.
, and Stienen
, G. J.
, 1997
, “Chemo-Mechanical Energy Transduction in Relation to Myosin Isoform Composition in Skeletal Muscle Fibres of the Rat
,” J. Physiol. (London)
, 502
(Pt 2
), pp. 449
–460
.36.
Zahalak
, G. I.
, 1986
, “A Comparison of the Mechanical Behavior of the Cat Soleus Muscle with a Distribution-Moment Model
,” J. Biomech. Eng.
, 108
(2
), pp. 131
–140
.37.
Lin
, D. C.
, and Rymer
, W. Z.
, 1993
, “Mechanical Properties of Cat Soleus Muscle Elicited by Sequential Ramp Stretches: Implications for Control of Muscle
,” J. Clin. Neurophysiol.
, 70
(3
), pp. 997
–1008
.38.
Harry
, J. D.
, Ward
, A. W.
, Heglund
, N. C.
, Morgan
, D. L.
, and McMahon
, T. A.
, 1990
, “Cross-Bridge Cycling Theories Cannot Explain High-Speed Lengthening Behavior in Frog Muscle
,” Biophys. J.
, 57
(2
), pp. 201
–208
.39.
Brenner
, B.
, 1986
, “The Cross-Bridge Cycle in Muscle. Mechanical, Biochemical, and Structural Studies on Single Skinned Rabbit Psoas Fibers to Characterize Cross-Bridge Kinetics in Muscle for Correlation with the Actomyosin-Atpase in Solution
,” Basic Res. Cardiol.
, 81
(Supplement 1
), pp. 1
–15
.40.
Getz
, E. B.
, Cooke
, R.
, and Lehman
, S. L.
, 1998
, “Phase Transition in Force During Ramp Stretches of Skeletal Muscle
,” Biophys. J.
, 75
(6
), pp. 2971
–2983
.41.
Huxley
, A. F.
, and Simmons
, R. M.
, 1971
, “Proposed Mechanism of Force Generation in Striated Muscle
,” Nature (London)
, 233
(5321
), pp. 533
–538
.42.
Campbell
, K. S.
, and Moss
, R. L.
, 2000
, “A Thixotropic Effect in Contracting Rabbit Psoas Muscle: Prior Movement Reduces the Initial Tension Response to Stretch
,” J. Physiol. (London)
, 525
(Pt 2
), pp. 531
–548
.Copyright © 2003
by ASME
You do not currently have access to this content.