External pneumatic compression of the lower legs is effective as prophylaxis against deep vein thrombosis. In a typical application, inflatable cuffs are wrapped around the patient’s legs and periodically inflated to prevent stasis, accelerate venous blood flow, and enhance fibrinolysis. The purpose of this study was to examine the stress distribution within the tissues, and the corresponding venous blood flow and intravascular shear stress with different external compression modalities. A two-dimensional finite element analysis (FEA) was used to determine venous collapse as a function of internal (venous) pressure and the magnitude and spatial distribution of external (surface) pressure. Using the one-dimensional equations governing flow in a collapsible tube and the relations for venous collapse from the FEA, blood flow resulting from external compression was simulated. Tests were conducted to compare circumferentially symmetric (C) and asymmetric (A) compression and to examine distributions of pressure along the limb. Results show that A compression produces greater vessel collapse and generates larger blood flow velocities and shear stresses than C compression. The differences between axially uniform and graded-sequential compression are less marked than previously found, with uniform compression providing slightly greater peak flow velocities and shear stresses. The major advantage of graded-sequential compression is found at midcalf. Strains at the lumenal border are approximately 20 percent at an external pressure of 50 mmHg (6650 Pa) with all compression modalities.

1.
Allenby
F.
,
Pfug
J. J.
,
Boardman
L.
, and
Calnan
J. S.
,
1973
, “
Effects of external pneumatic intermittent compression on fibrinolysis in man
,”
Lancet
, Vol.
1
, pp.
1412
1414
.
2.
Anderson
F. A.
, and
Wheeler
H. B.
,
1995
, “
Venous thromboembolism. Risk factors and prophylaxis
,”
Clin. Chest Med.
, Vol.
16
, pp.
235
251
.
3.
Cheng
J. J.
,
Chao
Y. J.
,
Wung
B. S.
, and
Wang
D. L.
,
1996
, “
Cyclic strain-induced plasminogen activator inhibitor-1 (PAI-1) release from endothelial cells involves reactive oxygen species
,”
Biochem. Biophys. Res. Commun.
, Vol.
225
(
1
), pp.
100
105
.
4.
Diamond
S. L.
,
Eskin
S. G.
, and
McIntire
L. V.
,
1989
, “
Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells
,”
Science
, Vol.
243
, pp.
1483
1485
.
5.
Diamond
S. L.
,
Sharefkin
J. B.
,
Diffenbach
C.
,
Frasier-Scott
K.
,
McIntire
L. V.
, and
Eskin
S. G.
,
1990
, “
Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress
,”
J. Cell Physiol.
, Vol.
143
, pp.
364
371
.
6.
Francis
C. W.
,
Pellegrini
V. D.
,
Marder
V. J.
, et al.,
1992
, “
Comparison of warfarin and external pneumatic compression in prevention of venous thrombosis after total hip replacement
,”
JAMA
, Vol.
267
, pp.
2911
2915
.
7.
Fung, Y. C., 1993, “Mechanical properties and active remodeling of blood vessels,” in: Biomechanics: Mechanical properties of living tissues, Springer-Verlag, New York, pp. 321–391.
8.
Gardner, A. M. N., and Fox, R. H., 1993, The Return of Blood to the Heart, John Libbey & Co., London.
9.
Geerts
W. H.
,
Gode
K. I.
,
Jay
R. M.
, et al.,
1994
, “
A prospective study of venous thromboembolism after major trauma
,”
NEJM
, Vol.
331
, pp.
1601
1606
.
10.
Hull
R. D.
,
Raskob
G. E.
,
Gent
M.
, et al.,
1990
, “
Effectiveness of intermittent pneumatic leg compression for preventing deep vein thrombosis after total hip replacement
,”
JAMA
, Vol.
263
, pp.
2313
2317
.
11.
Iba
T.
,
Shin
T.
,
Sonoda
T.
,
Rosales
O.
, and
Sumpio
B. E.
,
1991
, “
Stimulation of endothelial secretion of tissue-type plasminogen activator by repetitive stretch
,”
J. Surg. Res.
, Vol.
50
(
5
), pp.
457
60
.
12.
Iba
T.
, and
Sumpio
B. E.
,
1992
, “
Tissue plasminogen activator expression in endothelial cells exposed to cyclic strain in vitro
,”
Cell Transplant
, Vol.
1
(
1
), pp.
43
50
.
13.
Kamm
R. D.
, and
Shapiro
A. H.
,
1979
, “
Unsteady flow in collapsible tubes
,”
Journal of Fluid Mechanics
, Vol.
95
(
1
), pp.
1
78
.
14.
Kamm
R. D.
,
1982
, “
Bioengineering studies of periodic external compression as prophylaxis against deep vein thrombosis — Part 1: Numerical studies
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
104
, pp.
87
95
.
15.
Kamm
R. D.
,
Butcher
R. J.
,
Froelich
J. W.
,
Johnson
M. C.
,
Salzman
E. W.
,
Shapiro
A. H.
, and
Strauss
H. W.
,
1986
, “
Optimization of indices of external pneumatic compression for prophylaxis against deep vein thrombosis: radionuclide gated imaging studies
,”
Cardiovascular Research
, Vol.
20
(
8
), pp.
588
596
.
16.
Kawai
Y.
,
Matsumoto
Y.
,
Watanabe
K.
,
Yamamoto
H.
,
Satoh
K.
,
Murata
M.
,
Handa
M.
, and
Ikeda
Y.
,
1996
, “
Hemodynamic forces modulate the effects of cytokines on fibrinolytic activity of endothelial cells
,”
Blood
, Vol.
87
(
6
), pp.
2314
2321
.
17.
Killewich, L. A., Macko, R. F., Cox, K., Sandager, G. P., and Flinn, W. R., 1966, “External pneumatic compression does not enhance systemic fibrinolysis,” Eighth Annual Meeting of the American Venous Forum, San Diego, CA.
18.
Knight
M. T. N.
, and
Dawson
R.
,
1976
, “
Effect of intermittent compression of the arms on deep venous thrombosis in the legs
,”
Lancet
, Vol.
2
, pp.
370
373
.
19.
Lanir, Y., 1987, “Skin Mechanics,” in: Handbook of Bioengineering, R. Skalak and S. Chien, eds., McGraw-Hill, New York, pp. 11.1–11.25.
20.
Nicolaides
A. N.
,
Fernandes
E.
,
Fernandes
J.
, and
Pollock
A. V.
,
1983
, “
Intermittent sequential pneumatic compression of the legs and thromboembolism-deterrent stockings in the prevention of postoperative deep venous thrombosis
,”
Surgery
, Vol.
94
, pp.
21
25
.
21.
Planes
A.
,
Vochelle
N.
,
Darmon
J. Y.
, et al.,
1996
, “
Risk of deep-venous thrombosis after hospital discharge in patients having undergone total hip replacement: double-blind randomized comparison of enoxaparin versus placebo
,”
Lancet
, Vol.
348
, pp.
224
228
.
22.
Salzman
E. W.
,
McManama
G. P.
,
Shapiro
A. H.
, et al.,
1987
, “
Effect of optimization of hemodynamics on fibrinolytic activity and antithrombotic efficacy of external pneumatic calf compression
,”
Annals of Surgery
, Vol.
206
(
5
), pp.
636
641
.
23.
Sevitt
S.
, and
Gallagher
N.
,
1968
, “
Venous thrombosis and pulmonary embolism: a clinico-pathological study in injured and burned patients
,”
Br. J. Surg.
, Vol.
55
, pp.
481
505
.
24.
Shapiro
A. H.
,
1977
, “
Steady flow in collapsible tubes
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
99
, pp.
126
147
.
25.
Skilman
J. J.
,
Collins
R. E. C.
,
Coe
N. P.
, et al.,
1978
, “
Prevention of deep vein thrombosis in neurosurgical patients: a controlled randomized trial of external pneumatic compression boots
,”
Surgery
, Vol.
83
, pp.
354
357
.
26.
Tarnay
T. J.
,
Rohr
P. R.
,
Davidson
A. G.
,
Stevenson
M. M.
,
Byars
E. F.
, and
Hopkins
G. R.
,
1980
, “
Pneumatic calf compression, fibrinolysis, and the prevention of deep vein thrombosis
,”
Surgery
, Vol.
88
, pp.
489
496
.
27.
Timoshenko, S. P., and Gere, J. M., 1961, Theory of Elastic Stability, 2nd ed., McGraw-Hill, Toronto, Ontario, Chap. 11, pp. 457–520.
28.
Virchow, R. L. K., 1856, Thrombose und Emolie, Frankfurt, Germany.
29.
Yamada, H., 1970, Strength of Biological Materials, F. G. Evans, ed., Williams & Wilkins, Baltimore.
This content is only available via PDF.
You do not currently have access to this content.