The coupling of computational hemodynamics to measured translesional mean pressure gradients with an angioplasty catheter in human coronary stenoses was evaluated. A narrowed flow cross section with the catheter present effectively introduced a tighter stenosis than the enlarged residual stenoses after balloon angioplasty; thus elevating the pressure gradient and reducing blood flow during the measurements. For resting conditions with the catheter present, flow was believed to be about 40 percent of normal basal flow in the absence of the catheter, and for hyperemia, about 20 percent of elevated flow in the patient group. The computations indicated that the velocity field was viscous dominated and quasi-steady with negligible phase lag in the Δp(t) – u¯(t) relation during the cardiac cycle at the lower hydraulic Reynolds numbers and frequency parameter. Hemodynamic interactions with smaller catheter-based pressure sensors evolving in clinical use require subsequent study since artifactually elevated translesional pressure gradients can occur during measurements with current angioplasty catheters.

1.
Anderson
H. V.
,
Roubin
G. S.
,
Leimgruber
P. P.
,
Cox
W. R.
,
Douglas
J. S.
,
King
S. B.
, and
Gruentzig
A. R.
,
1986
, “
Measurement of Transstenotic Pressure Gradient During Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
, Vol.
73
, pp.
1223
1230
.
2.
Back
L. H.
, and
Denton
T. A.
,
1992
, “
Some Arterial Wall Shear Stress Estimates in Coronary Angioplasty
,”
Advances in Bioengineering
, ASME BED-Vol.
22
, pp.
337
340
.
3.
Back
L. H.
,
1994
, “
Estimated Mean Flow Resistance Increase During Coronary Artery Catheterization
,”
Journal of Biomechanics
, Vol.
27
, pp.
169
175
.
4.
Back
L. H.
,
Kwack
E. Y.
, and
Back
M. R.
,
1996
, “
Flow Rate-Pressure Drop Relation in Coronary Angioplasty: Catheter Obstruction Effect
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
118
, pp.
83
89
.
5.
Back
M. R.
,
White
R. A.
,
Kwack
E. Y.
, and
Back
L. H.
,
1997
, “
Hemodynamic Consequences of Stenosis Remodeling During Coronary Angioplasty
,”
Angiology
, Vol.
48
, No.
2
, pp.
99
109
.
6.
Baker, A. J., 1983, Finite Element Computational Fluid Mechanics, Hemisphere Publ. Co., Chap. 4, pp. 153–230.
7.
Banerjee, R. K., 1992, “A Study of Pulsatile Flow With Non-Newtonian Viscosity of Blood in Large Arteries,” Ph.D. Dissertation, Drexel University, Philadelphia, PA.
8.
Banerjee
R. K.
,
Cho
Y. I.
, and
Kensey
K. R.
,
1997
, “
A Study of Local Hemodynamics in a 90 degree Branch Vessel With Extreme Pulsatile Flows
,”
Int. J. Computational Fluid Dynamics
, Vol.
9
, pp.
23
42
.
9.
Brown
R. G.
,
Bolson
E. L.
, and
Dodge
H. T.
,
1984
, “
Dynamic Mechanisms in Human Coronary Stenosis
,”
Circulation
, Vol.
70
, pp.
917
922
.
10.
Cho
Y. I.
,
Back
L. H.
,
Crawford
D. W.
,
Cuffel
R. F.
,
1983
, “
Experimental Study of Pulsatile and Steady Flow Through a Smooth Tube and an Atherosclerotic Coronary Artery Casting of Man
,”
J. Biomechanics
, Vol.
16
, pp.
933
946
.
11.
Cho
Y. I.
, and
Kensey
K. R.
,
1991
, “
Effects of the non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel: Part 1, Steady Flows
,”
Biorheology
, Vol.
28
, pp.
241
262
.
12.
DeBruyne
B.
,
Pijls
N. H. J.
,
Paulus
W. J.
,
Vantrimpont
P. J.
,
Sys
S. U.
, and
Heyndrickx
G. R.
,
1993
, “
Transstenotic Coronary Pressure Gradient Measurement in Humans: In Vitro and In Vivo Evaluation of a New Pressure Monitoring Angioplasty Guide Wire
,”
J. Am. Coll. Cardiol.
, Vol.
22
, pp.
119
126
.
13.
Doucette
J. W.
,
Corl
P. D.
,
Payne
H. M.
,
Flynn
A. E.
,
Goto
M. N.
,
Nassi
M.
, and
Segal
J.
,
1992
, “
Validation of a Doppler Guide Wire for Intravascular Measurement of Coronary Artery Flow Velocity
,”
Circulation
, Vol.
85
, pp.
1899
1911
.
14.
Drexler
H.
,
Zeiher
A. M.
,
Wollschlager
H.
,
Meinertz
T.
,
Just
H.
, and
Bonzel
T.
,
1989
, “
Flow Dependent Coronary Artery Dilation in Humans
,”
Circulation
, Vol.
80
, pp.
466
474
.
15.
Emanuelsson
H.
,
Lamm
C.
,
Dohnal
M.
, and
Serruys
P. W.
,
1993
, “
High Fidelity Translesional Pressure Gradients During PTCA – Correlation With Quantitative Coronary Angiography
,”
J. Am. Coll. Cardiol.
, Vol.
21
, pp.
340A
340A
.
16.
FIDAP Manual, 1997, Fluent Inc., 10 Cavandish Court, Lebanon, NH 03766, USA.
17.
Ganz
P.
,
Harrington
D. P.
,
Gaspar
J.
, and
Barry
W. H.
,
1983
, “
Phasic Pressure Gradients Across Coronary and Renal Artery Stenoses in Humans
,”
American Heart J.
, Vol.
106
, pp.
1399
1406
.
18.
Ganz
P.
,
Abben
R.
,
Friedman
P. L.
,
Garnic
J. D.
,
Barry
W. H.
, and
Levin
D. C.
,
1985
, “
Usefulness of Transstenotic Coronary Pressure Gradient Measurements During Diagnostic Catheterization
,”
American J. Cardiology
, Vol.
55
, pp.
910
914
.
19.
Gruentzig
A. R.
,
Senning
A.
, and
Siegenthaler
W. E.
,
1979
, “
Nonoperative Dilation of Coronary Artery Stenosis: Percutaneous Transluminal Coronary Angioplasty
,”
New England J. Medicine
, Vol.
301
, pp.
61
68
.
20.
Leimgruber
P. P.
,
Roubin
G. S.
,
Anderson
H. V.
,
Bredlau
C. E.
,
Whitworth
H. B.
,
Douglas
J. S.
,
King
S. B.
, and
Gruentzig
A. R.
,
1985
, “
Influence of Intimal Dissection on Restenosis after Successful Coronary Angioplasty
,”
Circulation
, Vol.
72
, pp.
530
535
.
21.
Redd
D. C. B.
,
Roubin
G. S.
,
Leimgruber
P. P.
,
Abi-Mansour
P.
,
Douglas
J. S.
, and
King
S. B.
,
1987
, “
The Transstenotic Pressure Gradient Trend as a Predictor of Acute Complications After Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
, Vol.
76
, pp.
792
801
.
22.
Segal
J.
,
Kern
M. J.
,
Scott
N. A.
,
King
S. B.
,
Doucette
J. W.
,
Heuser
R. R.
,
Ofili
E.
, and
Siegel
R.
,
1992
, “
Alterations of Phasic Coronary Artery Flow Velocity in Humans During Percutaneous Coronary Angioplasty
,”
J. Am. Coll. Cardiol.
, Vol.
20
, pp.
276
286
.
23.
Sibley
D. H.
,
Millar
H. D.
,
Hartley
C. J.
, and
Whitlow
P. L.
,
1986
, “
Subselective Measurement of Coronary Blood Flow Velocity Using a Steerable Doppler Catheter
,”
J. Am. Coll. Cardiol.
, Vol.
8
, pp.
1332
1340
.
24.
Vita
J. A.
,
Treasure
C. B.
,
Ganz
P.
,
Cox
D. A.
,
Fish
R. D.
, and
Selwyn
A. P.
,
1989
, “
Control of Shear Stress in the Epicardial Coronary Arteries of Humans: Impairment by Atherosclerosis
,”
J. Am. Coll. Cardiol.
, Vol.
14
, pp.
1193
1199
.
25.
Ward-Smith, A. J., 1980, Internal Fluid Flow, Oxford University Press, Oxford, pp. 172.
26.
Wilson
R. F.
,
Johnson
M. R.
,
Marcus
M. L.
,
Aylward
P. E. G.
,
Skorton
D. J.
,
Collins
S.
, and
White
C. W.
,
1988
, “
The Effect of Coronary Angioplasty on Coronary Flow Reserve
,”
Circulation
, Vol.
77
, pp.
873
885
.
27.
Wilson
R. F.
, and
Laxson
D. D.
,
1993
, “
Caveat Emptor, A Clinician’s Guide to Assessing the Physiologic Significance of Arterial Stenoses
,”
Catheterization and Cardiovas. Diagn.
, Vol.
29
, pp.
93
98
.
28.
Young
D. F.
, and
Tsai
F. Y.
,
1973
, “
Flow Characteristics in Models of Arterial Stenosis —1 Steady Flow
,”
J. Biomechanics
, Vol.
6
, pp.
395
410
.
You do not currently have access to this content.