The maximum pore fluid pressures due to uniaxial compression are determined for both the vascular porosity (Haversian and Volkmann’s canals) and the lacunar–canalicular porosity of live cortical bone. It is estimated that the peak pore water pressure will be 19 percent of the applied axial stress in the vascular porosity and 12 percent of the applied axial stress in the lacunar–canalicular porosity for an impulsive step loading. However, the estimated relaxation time for the vascular porosity (1.36 μs) is three orders of magnitude faster than that estimated for the lacunar–canalicular porosity (4.9 ms). Thus, under physiological loading, which has a stress rise time generally larger than 1 ms, pressures higher than the vascular pressure cannot be sustained in the vascular porosity due to the swift pressure relaxation in this porosity (unless the fluid drainage through the boundary is obstructed). The model also predicts a slight hydraulic stiffening of the bulk modulus due to longer draining time of the lacunar–canalicular porosity. The undrained bulk modulus is 6 percent higher than the drained bulk modulus in this case.

1.
Ashman
R. B.
,
Cowin
S. C.
,
Van Buskirk
W. C.
, and
Rice
J. C.
,
1984
, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomechanics
,
17
,
349
361
.
2.
Atkinson, P. J., and Hallsworth, A. S., 1982, “The Spatial Structure of bone,” Progress in Anatomy, Vol. 2, Harrison, R. J., and Navaratnam, V., eds., Cambridge University Press, Great Britain, pp. 179–199.
3.
Baylink, D., and Wergedal, J., 1971, “Bone formation and resorption by osteocytes,” Cellular Mechanisms for Calcium Transfer and Homeostasis, George Nichols, Jr., and R. H. Wasserman, eds., Academic Press, New York–London, pp. 257–289.
4.
Biot
M. A.
,
1941
, “
General theory of three-dimensional consolidation
,”
J. Appl. Phys.
,
12
,
155
164
.
5.
Brookes, M., and Revell, W. J., 1998, The Blood Supply of Bone, Scientific Aspects, Springer, London, pp. 112, 125.
6.
Bundy, K. J., 1989, “Composite material models for bone,” Bone Mechanics, S. C. Cowin, ed., CRC Press, pp. 197–210.
7.
Chole
R. A.
, and
Tinling
S. P.
,
1993
, “
Incomplete coverage of mammalian bone matrix by lining cells
,”
Ann. Otol. Rhinol. Laryngol.
, Vol.
102
, pp.
543
550
.
8.
Christensen, R. M., 1979, Mechanics of Composite Materials, Wiley, New York, pp. 41–47.
9.
Coussy, O., 1995, Mechanics of Porous Continua, Wiley, Chichester, England.
10.
Cowin, S. C., 1989, “The mechanical properties of cortical bone tissue,” Bone Mechanics, S. C. Cowin, ed., CRC Press, pp. 97–127.
11.
Cowin
S. C.
, and
Sadegh
A. M.
,
1991
, “
Non-interacting modes for stress, strain and energy in anisotropic hard tissue
,”
J. Biomechanics
, Vol.
24
, No.
9
, pp.
859
867
.
12.
Cowin
S. C.
,
Weinbaum
S.
, and
Zeng
Yu
,
1995
, “
A case for the bone canaliculi as the anatomical site of strain generated potentials
,”
J. Biomechanics
,
28
, No.
11
:
1281
1297
.
13.
Detournay, E., and Cheng, A. H.-D., 1993, “Fundamentals of Poroelasticity,” Comprehensive Rock Engineering: Principles, Practice & Projects, J. A. Hudson, ed., Pergamon, pp. 113–171.
14.
Dewey
J. M.
,
1947
, “
The elastic constants of materials loaded with non-rigid fillers
,”
J. Appl. Phys.
, Vol.
18
, p.
578
578
.
15.
Frost
H. M.
,
1960
, “
Measurement of osteocytes per unit volume and volume components of osteocytes and canaliculae in man
,”
Henry Ford Hospital Medical Bulletin
, Vol.
8
, pp.
208
211
.
16.
Frost
H. M.
,
1962
, “
Specific surface and specific volume of normal human lamellar bone
,”
Henry Ford Hospital Medical Bulletin
, Vol.
10
, p.
35
35
.
17.
Geerstma
J.
,
1957
, “
The effect of fluid pressure decline on volumetric changes of porous rocks
,”
Soc. Petr. Eng.
, Vol.
210
, pp.
331
340
.
18.
Green
D. H.
, and
Wang
H. F.
,
1986
, “
Fluid pressure response to undrained compression in saturated sedimentary rock
,”
Geophysics
, Vol.
51
, No.
4
, pp.
948
956
.
19.
Jendrucko
R. J.
,
Hyman
W. A.
,
Newell
P. H.
, and
Chakraborty
B. K.
,
1976
, “
Theoretical evidence for the generation of high pressure in bone cells
,”
J. Biomechanics
, Vol.
9
, pp.
87
91
.
20.
Kafka
V.
,
1993
, “
On hydraulic strengthening of bones
,”
J. Biomech.
, Vol.
26
,
761
762
.
21.
Lakes
R. S.
,
Yoon
H. S.
, and
Katz
J. L.
,
1983
, “
Slow compressional wave propagation in wet human cortical bone
,”
Science
, Vol.
220
, pp.
513
515
.
22.
Li
G.
,
Bronk
J. T.
,
An
K. N.
, and
Kelly
P. J.
,
1987
, “
Permeability of cortical bone of canine tibiae
,”
Microcirculation Res.
, Vol.
34
, pp.
302
310
.
23.
Macaulay, M. A., 1987, Introduction to Impact Engineering, Chapman & Hall, London, pp. 201–230.
24.
Martin, R. B., and Burr, D. B., 1989, Structure, Function, and Adaptation of Compact Bone, Raven Press, New York, p. 33.
25.
Matthews, J. L., 1980, “Bone structure and ultrastructure,” in: Fundamental and Clinical Bone Physiology, M. R. Urist, ed., Philadelphia, PA: J. B. Lippincott Company, pp. 4–44.
26.
Morris
M. A.
,
Lopez-Curato
J. A.
,
Hughes
S. P. F.
,
An
K. N.
,
Bassingthwaighte
J. B.
, and
Kelly
P. J.
,
1982
, “
Fluid spaces in canine bone and marrow
,”
Microvascular Res.
, Vol.
23
,
188
200
.
27.
Neuman, W. F., and Neuman, M. W., 1958, The Chemical Dynamics of Bone, University of Chicago Press, Chicago.
28.
Pierkarski
K.
,
1973
, “
Analysis of bone as a composite material
,”
Int. J. Eng. Sci.
, Vol.
11
(
6A)
, p.
557
557
.
29.
Reid, S. E., and Reid, S. E., Jr., 1984, Head and Neck Injuries in Sports, Charles C. Thomas Publishers, Springfield, IL, p. 54.
30.
Rice
J. R.
, and
Cleary
M. P.
,
1976
, “
Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents
,”
Reviews of Geophysics and Space Physics
,
14
,
227
241
.
31.
Rouhana, S. W., Johnson, M. W., Chakkalakal, D. R., Harper, R. A., and Katz, J. L., 1981, “Permeability of compact bone,” Joint ASME–ASCE Conf. Biomechanics Symp., ASME Vol-AMD 43, pp. 169–172.
32.
Rubin
C. T.
,
Pratt
G. W.
,
Porter
A. L.
,
Lanyon
L. E.
, and
Poss
R.
,
1987
, “
The use of ultrasound in vivo to determine acute change in the mechanical properties of bone following intense physical activity
,”
J. Biomechanics
, Vol.
20
, No.
7
, pp.
723
727
.
33.
Schaffler
M. B.
, and
Burr
D. B.
,
1988
, “
Stiffness of compact bone: effects of porosity and density
,”
J. Biomechanics
, Vol.
21
, pp.
13
16
.
34.
Skempton
A. W.
,
1954
, “
The pore-pressure coefficients A and B.
Geotechnique
, Vol.
4
, pp.
143
147
.
35.
Weinbaum
S.
,
Cowin
S. C.
, and
Zeng
Y.
,
1994
, “
Excitation of osteocytes by mechanical loading-induced bone fluid shear stresses
,”
J. Biomechanics
,
27
, No.
3
:
339
360
.
36.
Williams
J. L.
,
1992
, “
Ultrasonic wave propagation in cancellous and cortical bone: Prediction of some experimental results by Biot’s theory
,”
J. Acoust. Soc. Am.
, Vol.
91
, pp.
1106
1112
.
37.
Zeng
Y.
,
Cowin
S. C.
, and
Weinbaum
S.
,
1994
, “
A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon
,”
Ann. of Biomed. Eng.
,
22
:
280
292
.
38.
Zhang
D.
, and
Cowin
S. C.
,
1994
, “
Oscillatory bending of a poroelastic beam
,”
J. Mech. Phys. Solids
,
42
, No.
10
:
1575
1599
.
39.
Zhang
D.
,
Cowin
S. C.
, and
Weinbaum
S.
,
1997
, “
Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon
,”
Annals of Biomedical Engineering
,
25
, pp.
357
374
.
40.
Zhang, D., Weinbaum, S., and Cowin, S. C., 1998, “On the calculation of bone pore fluid pressure due to mechanical loading,” Int. J. Solids Struct., in press.
This content is only available via PDF.
You do not currently have access to this content.