Technical Brief

Application of the Blade Element Momentum Theory to Design Horizontal Axis Wind Turbine Blades

[+] Author and Article Information
Vincent Dehouck, Mohamed Lateb, Jonathan Sacheau

Department of Mechanical Engineering,
Université de Sherbrooke,
2500 blvd. de l'Université,
Sherbrooke, QC J1K 2R1, Canada

Hachimi Fellouah

Department of Mechanical Engineering,
Université de Sherbrooke,
2500 blvd. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Hachimi.Fellouah@USherbrooke.ca

1Corresponding author.

Contributed by the Solar Energy Division of ASME for publication in the JOURNAL OF SOLAR ENERGY ENGINEERING: INCLUDING WIND ENERGY AND BUILDING ENERGY CONSERVATION. Manuscript received March 11, 2016; final manuscript received September 1, 2017; published online October 17, 2017. Assoc. Editor: Douglas Cairns.

J. Sol. Energy Eng 140(1), 014501 (Oct 17, 2017) (9 pages) Paper No: SOL-16-1124; doi: 10.1115/1.4038046 History: Received March 11, 2016; Revised September 01, 2017

Small horizontal axis wind turbines (HAWTs) are increasingly used as source of energy production. Based on this observation, the blade element momentum theory (BEMT) is applied all along the blade span to calculate the optimal turbine aerodynamic performances. The main objective is to optimize the HAWT blade profile for specific initial conditions. The effects of three geometric parameters (the blade tip radius, the number of blades, and curvature) and one dynamic parameter (the tip speed ratio (TSR)) are determined for an upstream air speed of 7 m/s. A new empirical relation for the chord distribution over the blade span is presented here; c(r)/R=c0+A[1+r/R]exp(Br/R), where c0 = 0.04 is the chord offset, A = 1/Z is an amplitude, and B = [(Z/5) + 2] is the decay constant. It takes into account both the effect of blade tip radius and the number of the blades.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Guney, M. S. , 2011, “ Evaluation and Measures to Increase Performance Coefficient of Hydrokinetic Turbines,” Renewable Sustainable Energy Rev., 15(8), pp. 3669–3675. [CrossRef]
Singh, P. M. , and Choi, Y. D. , 2014, “ Shape Design and Numerical Analysis on a 1MW Tidal Current Turbine for the South-Western Coast of Korea,” Renewable Energy, 68, pp. 485–493. [CrossRef]
Khan, M. J. , Bhuyan, G. , Iqbal, M. T. , and Quaicoe, J. E. , 2009, “ Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review,” Appl. Energy, 86(10), pp. 1823–1835. [CrossRef]
Lee, M. H. , Shiah, Y. C. , and Bai, C. J. , 2016, “ Experiments and Numerical Simulations of the Rotor-Blade Performance for a Small-Scale Horizontal Axis Wind Turbine,” J. Wind Eng. Ind. Aerodyn., 149, pp. 17–29. [CrossRef]
Liu, S. , and Janajreh, I. , 2012, “ Development and Application of an Improved Blade Element Momentum Method Model on Horizontal Axis Wind Turbines,” Int. J. Energy Environ. Eng., 3(1), p. 30. [CrossRef]
Velázquez, M. T. , Carmen, M. V. D. , Francis, J. A. , Pacheco, L. A. M. , and Eslava, G. T. , 2014, “ Design and Experimentation of a 1MW Horizontal Axis Wind Turbine,” J. Power Energy Eng., 2(01), pp. 9–16. [CrossRef]
Liu, X. , Wang, L. , and Tang, X. , 2013, “ Optimized Linearization of Chord and Twist Angle Profiles for Fixed-Pitch Fixed-Speed Wind Turbine Blades,” Renewable Energy, 57, pp. 111–119. [CrossRef]
Freitas Silva, P. A. S. , Shinomiya, L. D. , De Oliveira, T. F. , Pinheiro Vaz Jn, R. , Amarante Mesquita, A. L. , and Pinho Brasil, A. C., Jr. , 2017, “ Analysis of Cavitation for the Optimized Design of Hydrokinetic Turbines Using BEM,” Appl. Energy, 185(Pt. 2), pp. 1281–1291. [CrossRef]
Al-Abadi, A. , Ertunç, E. , Weber, H. , and Delgado, A. , 2014, “ A Torque Matched Aerodynamic Performance Analysis Method for the Horizontal Axis Wind Turbines,” Wind Energy, 17(11), pp. 1727–1736. [CrossRef]
Griffiths, R. T. , and Woollard, M. G. , 1978, “ Performance of the Optimal Wind Turbine,” Appl. Energy, 4(4), pp. 261–272. [CrossRef]
Molenaar, D. P. , 2003, “ Cost Effective Design and Operation of Variable Speed Wind Turbines,” Ph.D. thesis, Delft University, Delft, The Netherlands.
Pinto, R. L. U. d. F. , and Gonçalves, B. P. F. , 2017, “ A Revised Theoretical Analysis of Aerodynamic Optimization of Horizontal-Axis Wind Turbines Based on BEM Theory,” Renewable Energy, 105, pp. 625–636. [CrossRef]
Vandenberghe, D. , and Dick, E. , 1987, “ A Free Vortex Simulation Method for the Straight Bladed Vertical Axis Wind Turbine,” J. Wind Eng. Ind. Aerodyn., 26(3), pp. 307–324. [CrossRef]
Afungchui, D. , Kamoun, B. , and Helali, A. , 2014, “ Vortical Structures in the Wake of the Savonius Wind Turbine by the Discrete Vortex Method,” Renewable Energy, 69, pp. 174–179. [CrossRef]
Sessarego, M. , Ramos-Garcia, N. , Hua, Y. , and Shen, W. Z. , 2016, “ Aerodynamic Wind-Turbine Rotor Design Using Surrogate Modeling and Three-Dimensional Viscous-Inviscid Interaction Technique,” Renewable Energy, 93, pp. 620–635. [CrossRef]
Hansen, M. O. L. , and Johansen, J. , 2004, “ Tip Studies Using CFD and Comparison With Tip Loss Models,” Wind Energy, 7(4), pp. 343–356. [CrossRef]
Mycek, P. , Gaurier, B. , Germain, G. , Pinon, G. , and Rivoalen, E. , 2013, “ Numerical and Experimental Study of the Interaction Between Two Marine Current Turbines,” Int. J. Mar. Energy, 1, pp. 70–83. [CrossRef]
Moshfeghi, M. , Song, Y. J. , and Xie, Y. H. , 2012, “ Effects of Near-Wall Grid Spacing on SST-kω Model Using NREL Phase VI Horizontal Axis Wind Turbine,” J. Wind Eng. Ind. Aerodyn., 107–108, pp. 94–105. [CrossRef]
Costa Rocha, P. A. , Barbosa Rocha, H. H. , MouraCarneiro, F. O. , Vieira da Silva, M. E. , and Valente Bueno, A. , 2014, “ kω SST (Shear Stress Transport) Turbulence Model Calibration: A Case Study on a Small Scale Horizontal Axis Wind Turbine,” Energy, 65, pp. 412–418. [CrossRef]
Xudong, W. , Shen, W. Z. , Zhu, W. J. , Sørensen, J. N. , and Jin, C. , 2009, “ Shape Optimization of Wind Turbine Blades,” Wind Energy, 12(8), pp. 781–803. [CrossRef]
Xiong, L. , Xianmin, Z. , Gangqiang, L. , Yan, C. , and Zhiquan, Y. , 2010, “ Dynamic Response Analysis of the Rotating Blade of Horizontal Axis Wind Turbine,” Wind Eng., 34(5), pp. 543–560. [CrossRef]
Jourieh, M. , Kuszla, P. , Dobrev, I. , and Massouh, F. , 2006, “ Hybrid Rotor Models for the Numerical Optimisation of Wind Turbine Farms,” First International Symposium on Environment Identities and Mediterranean Area (ISEIMA), Corte-Ajaccio, France, July 9–12, pp. 173–177.
Yang, Y. , Li, C. , Zhang, W. , Yang, J. , Ye, Z. , Miao, W. , and Ye, K. , 2016, “ A Multi-Objective Optimization for HAWT Blades Design by Considering Structural Strength,” J. Mech. Sci. Technol., 30(8), pp. 3693–3703. [CrossRef]
Bottasso, C. , Campagnolo, F. , and Croce, A. , 2012, “ Multi-Disciplinary Constrained Optimization of Wind Turbines,” Multibody Syst. Dyn., 27(1), pp. 21–53. [CrossRef]
Jureczko, M. , Pawlak, M. , and Mezyk, A. , 2005, “ Optimisation of Wind Turbine Blades,” J. Mater. Process. Technol., 167(2–3), pp. 463–471. [CrossRef]
Chehouri, A. , Younes, R. , Ilinca, A. , and Perron, J. , 2015, “ Review of Performance Optimization Techniques Applied to Wind Turbines,” Appl. Energy, 142, pp. 361–388. [CrossRef]
ElQatary, I. , and Elhadidi, B. , 2014, “ Comparison Between OpenFOAM CFD & BEM Theory for Variable Speed—Variable Pitch HAWT,” ITM Web Conf., 2, p. 05001. [CrossRef]
Batten, W. , Bahaj, A. , Molland, A. , and Chaplin, J. , 2007, “ Experimentally Validated Numerical Method for the Hydrodynamic Design of Horizontal Axis Tidal Turbines,” Ocean Eng., 34(7), pp. 1013–1020. [CrossRef]
Batten, W. , Bahaj, A. , Molland, A. , and Chaplin, J. , 2008, “ The Prediction of the Hydrodynamic Performance of Marine Current Turbines,” Renewable Energy, 33(5), pp. 1085–1096. [CrossRef]
Lee, J. H. , Park, S. , Kim, D. H. , Rhee, S. H. , and Kim, M. , 2012, “ Computational Methods for Performance Analysis of Horizontal Axis Tidal Stream Turbinesm,” Appl. Energy, 98, pp. 512–523. [CrossRef]
Rajakumar, S. , and Ravindran, D. , 2012, “ Iterative Approach for Optimizing Coefficient of Power, Coefficient of Lift and Drag of Wind Turbine Rotor,” Renewable Energy, 38(1), pp. 83–93. [CrossRef]
Zhu, W. J. , Shen, W. Z. , and Sørensen, J. N. , 2014, “ Integrated Airfoil and Blade Design Method for Large Wind Turbines,” Renewable Energy, 70, pp. 172–183. [CrossRef]
Tachos, N. S. , Filios, A. E. , Margaris, D. P. , and Kaldellis, J. K. , 2009, “ A Computational Aerodynamics Simulation of the NREL Phase II Rotor,” The Open Mech. Eng. J., 3(1), pp. 9–16. [CrossRef]
I. F. S. A. Kabir , and E. Y. K. Ng , 2017, “ Insight Into Stall Delay and Computation of 3D Sectional Aerofoil Characteristics of NREL Phase VI Wind Turbine Using Inverse BEM and Improvement in BEM Analysis Accounting for Stall Delay Effect,” Energy, 120, pp. 518–536. [CrossRef]
Rahimi, H. , Dose, B. , Stoevesandt, B. , and Peinke, J. , 2016, “ Investigation of the Validity of BEM for Simulation of Wind Turbines in Complex Load Cases and Comparison With Experiment and CFD,” J. Phys.: Conf. Ser., 749(1), p. 012015. [CrossRef]
Drela, M. , and Youngren, H. , 2001, “ XFOIL 6.9 User Primer, XFOIL Documentation,” Massachusetts Institute of Technology, Cambridge, MA, accessed Oct. 6, 2017, http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt
Snel, H. , 1998, “ Review of the Present Methods of Rotor Aerodynamics,” Wind Energy, 1, pp. 46–69. [CrossRef]
Bai, C.-J. , and Wang, W.-C. , 2016, “ Review of Computational and Experimental Approaches to Analysis of Aerodynamic Performance in Horizontal-Axis Wind Turbines (HAWTs),” Renewable Sustainable Energy Rev., 63, pp. 506–519. [CrossRef]
Chen, C. , Choi, Y. , and Yoon, H. , 2013, “ Blade Design and Performance Analysis on the Horizontal Axis Tidal Current Turbine for Low Water Level Channel,” IOP Conf. Ser.: Mater. Sci. Eng., 52(5), p. 052020. [CrossRef]
Mahri, Z. L. , Zid, S. , and Salah, R. M. , 2013, “ An Optimal Design of the Wind Turbine Blade Geometry Adapted to a Specific Site Using Algerian Wind Data,” ROMAI J., 9(2), pp. 143–154.
Lee, J. H. , Kim, D. H. , Rhee, S. H. , Do, I. R. , Shin, B. C. , and Kim, M. C. , 2011, “ Computational and Experimental Analysis for Horizontal Axis Marine Current Turbine Design,” Second International Symposium on Marine Propulsors (SMP), Hamburg, Germany, June 15–17, pp. 371–376.
Johnson, D. A. , Gu, M. , and Gaunt, B. , 2016, “ Wind Turbine Performance in Controlled Conditions: BEM Modeling and Comparison With Experimental Results,” Int. J. Rotating Mach., 2016, p. 5460823. [CrossRef]
Mirghaed, M. R. , and Roshandel, R. , 2013, “ Site Specific Optimization of Wind Turbines Energy Cost: Iterative Approach,” Energy Convers. Manage., 73, pp. 167–175. [CrossRef]
Selig, M. S. , and McGranahan, B. D. , 2004, “ Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines,” ASME J. Sol. Energy Eng., 126(4), pp. 986–1001. [CrossRef]
Ahmed, M. R. , 2012, “ Blade Sections for Wind Turbine and Tidal Current Turbine Applications—Current Status and Future Challenges,” Int. J. Energy Res., 36(7), pp. 829–844. [CrossRef]
Drouen, L. , Charpentier, J. F. , Semail, E. , and Clenet, S. , 2012, “ A Global Approach for the Design of a Rim-Driven Marine Turbine Generator for Sail Boat,” IEEE—XX International Conference on Electrical Machines (ICEM), Marseille, France, Sept. 2–5, pp. 549–555.
Tenguria, N. , Mittal, N. D. , and Ahmed, S. , 2010, “ Investigation of Blade Performance of Horizontal Axis Wind Turbine Based on Blade Element Momentum Theory (BEMT) Using NACA Airfoils,” Int. J. Eng., Sci. Technol., 2(12), pp. 25–35.
Benini, E. , and Toffolo, A. , 2002, “ Optimal Design of Horizontal Axis Wind Turbines Using Blade Element Theory and Evolutionary Computation,” ASME J. Sol. Energy Eng., 124(4), pp. 357–363. [CrossRef]
Burton, T. , Jenkins, N. , Sharpe, D. , and Bossanyi, E. , 2011, Wind Energy Handbook, 2nd ed., Wiley, Chichester, UK. [CrossRef]
Johnson, W. , 1980, Helicopter Theory, Princeton University Press, Princeton, NJ.
Le Gouriérès, D. , 2014, Wind Power Plants: Theory and Design, Pergamon Press, Oxford, UK.
Manwell, J. F. , McGowan, J. G. , and Rogers, A. L. , 2009, Wind Energy Explained: Theory, Design and Application, 2nd ed., Wiley, Chichester, UK. [CrossRef]
Glauert, H. , 1963, “ Airplane Propellers,” Aerodynamic Theory, W. F. Durand , ed., Dover Publications, Mineola, NY, pp. 169–360. [CrossRef]
Wilson, R. E. , and Lissaman, P. B. S. , 1974, “ Applied Aerodynamics of Wind Power Machines,” Oregon State University, Corvallis, OR, Report No. NSF/RA/N-74113.
Anderson, M. B. , 1980, “ A Vortex-Wake Analysis of a Horizontal Axis Wind Turbine and a Comparison With Modified Blade Element Theory,” Third International Symposium on Wind Energy Systems (WES), Lyngby, Denmark, Aug. 26–29, pp. 357–374.
Branlard, E. , 2011, “ Wind Turbine Tip-Loss Corrections – Review, Implementation and Investigation of New Models,” Master's thesis, RisøDUT (Technical University of Denmark), Lyngby, Denmark.
Shen, Z. W. , Mikkelsen, R. , and Sørensen, J. N. , 2005, “ Tip Loss Corrections for Wind Turbine Computations,” Wind Energy, 8(4), pp. 457–475. [CrossRef]
Clifton Smith, M. J. , 2009, “ Wind Turbine Blade Optimisation With Tip Loss Corrections,” Wind Eng., 33(5), pp. 477–496. [CrossRef]
Herráez, I. , Stoevesandt, B. , and Peinke, J. , 2014, “ Insight Into Rotational Effects on a Wind Turbine Blade Using Navier–Stokes Computations,” Energies, 7(10), pp. 6798–6822. [CrossRef]
Guntur, S. , Bak, C. , and Sørensen, N. , 2011, “ Analysis of 3D Stall Models for Wind Turbine Blades Using Data From the MEXICO Experiment,” 13th International Conference on Wind Engineering (ICWE), Amsterdam, The Netherlands, July 10–15.
Breton, S. P. , Coton, F. N. , and Moe, G. , 2008, “ A Study on Rotational Effects and Different Stall Delay Models Using a Prescribed Wake Vortex Scheme and NREL Phase VI Experiment Data,” Wind Energy, 11(5), pp. 459–482. [CrossRef]
Sarraf, C. , Djeridi, H. , Prothin, S. , and Billard, J. Y. , 2010, “ Thickness Effect of NACA Foils on Hydrodynamic Global Parameters, Boundary Layer States and Stall Establishment,” J. Fluids Struct., 26(4), pp. 559–578. [CrossRef]
Xu, G. , and Sankar, L. N. , 2002, “ Application of a Viscous Flow Methodology to the NREL Phase VI Rotor,” ASME Paper No. WIND2002-30.


Grahic Jump Location
Fig. 1

Geometry for the rotor analysis: (a) actuator disk and (b) fluid stream tube

Grahic Jump Location
Fig. 2

Forces acting on the blade element

Grahic Jump Location
Fig. 3

Blade element momentum theory program flowchart

Grahic Jump Location
Fig. 4

Global program flowchart for the optimization procedure

Grahic Jump Location
Fig. 5

Curves of the normalized blade chord at TSR = 5. Effect of (a) the blade radius and (b) the blade number.

Grahic Jump Location
Fig. 6

Curves of the blade twist angle along the blade radius

Grahic Jump Location
Fig. 7

Curves of the turbine blade power coefficient at different TSR



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In