This work is concerned with Mathieu's equation—a classical differential equation, which has the form of a linear second-order ordinary differential equation (ODE) with Cosine-type periodic forcing of the stiffness coefficient, and its different generalizations/extensions. These extensions include: the effects of linear viscous damping, geometric nonlinearity, damping nonlinearity, fractional derivative terms, delay terms, quasiperiodic excitation, or elliptic-type excitation. The aim is to provide a systematic overview of the methods to determine the corresponding stability chart, its structure and features, and how it differs from that of the classical Mathieu's equation.
Issue Section:
Review Article
Keywords:
Vibration
References
1.
Rand
, R. H.
, 2017, “Lecture Notes on Nonlinear Vibrations (Version 53)
,” Cornell University, Ithaca, NY, accessed July 23, 2017, http://dspace.library.cornell.edu/handle/1813/289892.
Magnus
, W.
, and Winkler
, S.
, 1961
, “Hill's Equation—Part II: Transformations, Approximation, Examples
,” New York University, New York, Report No. BR-38
.https://archive.org/details/hillsequationiit00magn3.
McLachlan
, N. W.
, 1947
, Theory and Applications of Mathieu Functions
, Clarendon Press
, Oxford, UK
.4.
Erdelyi
, A.
, 1955
, Higher Transcendental Functions
, Vol. III
, McGraw-Hill Book Company
, New York
.5.
Stoker
, J. J.
, 1950
, Nonlinear Vibrations in Mechanical and Electrical Systems
, Interscience Publishers
, New York
.6.
Cartmell
, M.
, 1990
, Introduction to Linear, Parametric and Nonlinear Vibrations
, Chapman and Hall
, London
.7.
Ruby
, L.
, 1996
, “Applications of the Mathieu Equation
,” Am. J. Phys.
, 64
(1
), pp. 39
–44
.8.
Mathieu
, E.
, 1868
, “Mémoire sur Le Mouvement Vibratoire d'une Membrane de forme Elliptique
,” J. Math. Pures Appl.
, 13
, pp. 137
–203
.9.
Heine
, E.
, 1878
, Hanbuch Der Kugelfunktionen
, Vol. 2
, Georg Reimer, Berlin, p. 81
.10.
Floquet
, G.
, 1883
, “Sur les equations differetielles lineaires
,” Ann. de L' Cole Normale Super.
, 12
, pp. 47
–88
.11.
Hill
, G. W.
, 1886
, “Mean Motion of the Lunar Perigee
,” Acta Math.
, 8
, pp. 1
–36
.12.
Lord Rayleigh,
1887
, “Maintenance of Vibrations by Forces of Double Frequency and Propagation of Waves Through a Medium With a Periodic Structure
,” Philo Magaz.
, 24
(147
), pp. 145
–159
.http://optoelectronics.eecs.berkeley.edu/LordRayleighA.pdf13.
Sieger
, B.
, 1908
, “Die Beugung einer ebened elektrischen Weilen an einem Schirm von elliptischen Querschnitt
,” A. der P.
, 27
(13
), p. 626
.14.
Whittaker
, E. T.
, 1912
, “Elliptic Cylinder Functions in Harmonic Analysis
,” Paediatric Intensive Care Medicine
, Vol. 1
, Springer, London, p. 366
.15.
Ince
, E.
, 1927
, “Research Into the Characteristic Numbers of Mathieu Equation
,” Proc. R. Soc. Edinburgh
, 46
, pp. 20
–29
.16.
Strutt
, M. J. O.
, 1928
, “Zur Wellenmechanik des Atomgitters
,” Ann. Phys.
, 391
(10
), pp. 319
–324
.17.
Stephenson
, A.
, 1908
, “On a New Type of Dynamic Stability
,” Memoirs and Proceedings of the Manchester Literary and Philosophical Society
, Vol. 52
, Manchester Literary and Philosophical Society, Manchester, UK, pp. 1
–10
.18.
Stephenson
, A.
, 1908
, “On Induced Stability
,” Philos. Mag.
, 15
(86
), pp. 233
–236
.19.
Thomsen
, J. J.
, 2003
, Vibrations and Stability: Advanced Theory, Analysis, and Tools
, Springer-Verlag
, Berlin
.20.
Seyranian
, A. P.
, and Mailybaev
, A. A.
, 2003
, Multiparameter Stability Theory with Mechanical Applications
, Vol. 13
, World Scientific
, Singapore.21.
Verhulst
, F.
, 2009, “Perturbation Analysis of Parametric Resonance
,” Encyclopedia of Complexity and Systems Science
, R. Meyers, ed., Springer, New York.22.
Vlajic
, N.
, Liu
, X.
, Karki
, H.
, and Balachandran
, B.
, 2014
, “Torsional Oscillations of a Rotor With Continuous Stator Contact
,” Int. J. Mech. Sci.
, 83
, pp. 65
–75
.23.
Yang
, T. L.
, and Rosenberg
, R. M.
, 1967
, “On the Vibrations of a Particle in the Plane
,” Int. J. Non-Linear Mech.
, 2
(1), pp. 1
–25
.24.
Yang
, T. L.
, and Rosenberg
, R. M.
, 1968
, “On the Forced Vibrations of a Particle in the Plane
,” Int. J. Non-Linear Mech.
, 3
(1
), pp. 47
–63
.25.
Cole
, J. D.
, 1968
, Perturbation Methods in Applied Mathematics
, Blaisdell
, Waltham, MA.26.
Nayfeh
, A.
, 1973
, Perturbation Methods
, Wiley
, New York.27.
Insperger
, T.
, and Stépán
, G.
, 2011
, Semi Discretization for Time Delay Systems: Stability and Engineering Applications
(Applied Mathematical Science, Vol. 178), Springer Science+Business Media
, New York.28.
Kovacic
, I. I.
, and Rand
, R.
, 2014
, “Duffing-Type Oscillators With Amplitude-Independent Period
,” Applied Nonlinear Dynamical Systems
, Vol. 93
, J.
Awrejcewicz
, ed., Springer
, Berlin, pp. 1
–10
.29.
Kovacic
, I.
, and Brennan
, M. J.
, 2011
, The Duffing Equation: Nonlinear Oscillators and Their Behaviour
, Wiley
, Chichester, UK
.30.
Rand
, R. H.
, Ramani
, D. V.
, Keith
, W. L.
, and Cipolla
, K. M.
, 2000
, “The Quadratically Damped Mathieu Equation and Its Application to Submarine Dynamics
,” Control of Noise and Vibration: New Millenium
, AD-Vol. 61, ASME
, New York
, pp. 39
–50
.31.
Ramani
, D. V.
, Keith
, W. L.
, and Rand
, R. H.
, 2004
, “Perturbation Solution for Secondary Bifurcation in the Quadratically-Damped Mathieu Equation
,” Int. J. Non-Linear Mech.
, 39
(3
), pp. 491
–502
.32.
Morrison
, T. M.
, and Rand
, R. H.
, 2007
, “2:1 Resonance in the Delayed Nonlinear Mathieu Equation
,” Nonlinear Dyn.
, 50
(1–2
), pp. 341
–352
.33.
Insperger
, T.
, and Stepan
, G.
, 2002
, “Stability Chart for the Delayed Mathieu Equation,” Proc. R. Soc. A, 458
(2024
), pp. 1989
–1998
.34.
Butcher
, E. A.
, and Mann
, B. P.
, 2009
, “Stability Analysis and Control of Linear Periodic Delayed Systems Using Chebyshev and Temporal Finite Element Methods
,” Delay Differential Equations: Recent Advances and New Directions
, B.
Balachandran
, D.
Gilsinn
, and T.
Kalmar-Nagy
, eds., Springer
, New York
.35.
Atay
, F. M.
, 1998
, “Van Der Pol's Oscillator Under Delayed Feedback
,” J. Sound Vib.
, 218
(2
), pp. 333
–339
.36.
Wirkus
, S.
, and Rand
, R. H.
, 2002
, “The Dynamics of Two Coupled Van Der Pol Oscillators With Delay Coupling
,” Nonlinear Dyn.
, 30
(3), pp. 205
–221
.37.
Sah
, S. M.
, and Rand
, R.
, 2016
, “Delay Terms in the Slow Flow
,” J. Appl. Nonlinear Dyn.
, 5
(4
), pp. 471
–484
.38.
Bernstein
, A.
, and Rand
, R.
, 2016
, “Delay-Coupled Mathieu Equations in Synchrotron Dynamics
,” J. Appl. Nonlinear Dyn.
, 5
(3
), pp. 337
–348
.39.
Rand
, R. H.
, Sah
, S. M.
, and Suchorsky
, M. K.
, 2010
, “Fractional Mathieu Equation
,” Commun. Nonlinear Sci. Numer. Simul.
, 15
(11
), pp. 3254
–3262
.40.
Ross
, B.
, 1975
, “A Brief History and Exposition of the Fundamental Theory of Fractional Calculus
,” Fractional Calculus and Its Applications
(Springer Lecture Notes in Mathematics, Vol. 57), Springer, New York, pp. 1
–36
.41.
Mesbahi
, A.
, Haeri
, M.
, Nazari
, M.
, and Butcher
, E. A.
, 2015
, “Fractional Delayed Damped Mathieu Equation
,” Int. J. Control
, 88
(3
), pp. 622
–630
.42.
Rand
, R.
, Zounes
, R.
, and Hastings
, R.
, 1997
, “Dynamics of a Quasiperiodically Forced Mathieu Oscillator
,” Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume
, A.
Guran
, ed., World Scientific
, Singapore, pp. 203
–221
.43.
Zounes
, R. S.
, and Rand
, R. H.
, 1998
, “Transition Curves in the Quasiperiodic Mathieu Equation
,” SIAM J. Appl. Math.
, 58
(4
), pp. 1094
–1115
.44.
Abouhazim
, N.
, Rand
, R. H.
, and Belhaq
, M.
, 2006
, “The Damped Nonlinear Quasiperiodic Mathieu Equation Near 2:2:1 Resonance
,” Nonlinear Dyn.
, 45
(3–4
), pp. 237
–247
.45.
Rand
, R.
, Guennoun
, K.
, and Belhaq
, M.
, 2003
, “2:2:1 Resonance in the Quasiperiodic Mathieu Equation
,” Nonlinear Dyn.
, 31
(4), pp. 367
–374
.46.
Rand
, R.
, and Morrison
, T.
, 2005
, “2:1:1 Resonance in the Quasi-Periodic Mathieu Equation
,” Nonlinear Dyn.
, 40
(2), pp. 195
–203
.47.
Sharma
, A.
, and Sinha
, S. C.
, 2017
, “An Approximate Analysis of Quasi-Periodic Systems Via Floquet Theory
,” ASME J. Comput. Nonlinear Dyn.
, 13
(2
), p. 021008
.48.
Zounes
, R. S.
, and Rand
, R. H.
, 2002
, “Global Behavior of a Nonlinear Quasiperiodic Mathieu Equation
,” Nonlinear Dyn.
, 27
(1
), pp. 87
–105
.49.
Abramowitz
, M.
, and Stegun
, I.
, 1965
, Handbook of Mathematical Functions
, Dover Publications
, Mineola, NY
.50.
Kovacic
, I.
, Cveticanin
, L.
, Zukovic
, M.
, and Rakaric
, Z.
, 2016
, “Jacobi Elliptic Functions: A Review of Nonlinear Oscillatory Application Problems
,” J. Sound Vib.
, 380
, pp. 1
–36
.51.
Byrd
, P.
, and Friedman
, M.
, 1954
, Handbook of Elliptic Integrals for Engineers and Scientists
, Springer
, Berlin
.52.
Gradshteyn
, I. S.
, and Ryzhik
, I. M.
, 2000
, Tables of Integrals, Series and Products
, Academic Press
, New York
.53.
Kovacic
, I.
, and Zukovic
, M.
, 2014
, “A Pendulum With an Elliptic-Type Parametric Excitation: Stability Charts for a Damped and Undamped System
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(4
), pp. 1185
–1202
.54.
Sah
, S. M.
, and Mann
, B.
, 2012
, “Transition Curves in a Parametrically Excited Pendulum With a Force of Elliptic Type
,” Proc. R. Soc. A
, 468
(2148
), pp. 3995
–4007
.55.
Dingle
, R. B.
, and Müller-Kirsten
, H. J. W.
, 1962
, “Asymptotic Expansions of Mathieu Functions and Their Characteristic Numbers
,” J. Die Reine Angew. Math.
, 1962
(211), pp. 11
–32
.Copyright © 2018 by ASME
You do not currently have access to this content.