Abstract

Hydrogen embrittlement poses a significant challenge to hydrogen transportation and storage in advancing the hydrogen economy. Despite extensive research, uncertainty regarding how hydrogen affects dislocation nucleation, owing to the lack of quantitative evidence, hinders our understanding of hydrogen embrittlement. In this study, we demonstrate that hydrogen atoms influence surface dislocation nucleation differently depending on their locations: hydrogen at the surface inhibits nucleation, while hydrogen in the bulk promotes it. This dual behavior is attributed to differences in hydrogen binding energies at various sites, a phenomenon further validated through nudged elastic band calculations and transition state theory. Additionally, we propose a modified nucleation rate that incorporates thermal expansion effects, which aligns closely with results from molecular dynamics simulations. These findings at the individual dislocation level offer promising guidance, suggesting that strategies such as suppressing hydrogen accumulation at the surface might effectively mitigate hydrogen embrittlement issues.

References

1.
Service
,
R. F.
,
2004
, “
The Hydrogen Backlash
,”
Science
,
305
(
5686
), pp.
958
961
.
2.
Hirth
,
J. P.
,
1980
, “
Effects of Hydrogen on the Properties of Iron and Steel
,”
Mater. Sci. Eng. A
,
11
, pp.
861
890
.
3.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
,
1994
, “
Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture
,”
Mater. Sci. Eng. A
,
176
(
1–2
), pp.
191
202
.
4.
Murakami
,
Y.
,
2006
, “
The Effect of Hydrogen on Fatigue Properties of Metals Used for Fuel Cell System
,”
Int. J. Fract.
,
138
(
1–4
), pp.
167
195
.
5.
Troiano
,
A. R.
,
1960
, “
The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals
,”
Trans. ASM
,
52
, pp.
54
80
.
6.
Oriani
,
R. A.
,
1972
, “
A Mechanistic Theory of Hydrogen Embrittlement of Steels
,”
Ber. Bunsenges. Phys. Chem.
,
76
(
8
), pp.
848
857
.
7.
Robertson
,
I.
,
2001
, “
The Effect of Hydrogen on Dislocation Dynamics
,”
Eng. Fract. Mech.
,
68
(
6
), pp.
671
692
.
8.
Toda
,
H.
,
Hidaka
,
T.
,
Kobayashi
,
M.
,
Uesugi
,
K.
,
Takeuchi
,
A.
, and
Horikawa
,
K.
,
2009
, “
Growth Behavior of Hydrogen Micropores in Aluminum Alloys During High-Temperature Exposure
,”
Acta Mater.
,
57
(
7
), pp.
2277
2290
.
9.
Xie
,
D.-G.
,
Wang
,
Z.-J.
,
Sun
,
J.
,
Li
,
J.
,
Ma
,
E.
, and
Shan
,
Z.-W.
,
2015
, “
In Situ Study of the Initiation of Hydrogen Bubbles at the Aluminum Metal/Oxide Interface
,”
Nat. Mater.
,
14
(
9
), pp.
899
903
.
10.
Li
,
M.
,
Xie
,
D.-G.
,
Ma
,
E.
,
Li
,
J.
,
Zhang
,
X.-X.
, and
Shan
,
Z.-W.
,
2017
, “
Effect of Hydrogen on the Integrity of Aluminium-Oxide Interface at Elevated Temperatures
,”
Nat. Commun.
,
8
(
1
), p.
14564
.
11.
Lu
,
G.
, and
Kaxiras
,
E.
,
2005
, “
Hydrogen Embrittlement of Aluminum: The Crucial Role of Vacancies
,”
Phys. Rev. Lett.
,
94
(
15
), p.
155501
.
12.
Takai
,
K.
,
Shoda
,
H.
,
Suzuki
,
H.
, and
Nagumo
,
M.
,
2008
, “
Lattice Defects Dominating Hydrogen-Related Failure of Metals
,”
Acta Mater.
,
56
(
18
), pp.
5158
5167
.
13.
Schuh
,
C. A.
,
Mason
,
J. K.
, and
Lund
,
A. C.
,
2005
, “
Quantitative Insight Into Dislocation Nucleation From High-Temperature Nanoindentation Experiments
,”
Nat. Mater.
,
4
(
8
), pp.
617
621
.
14.
Greer
,
J. R.
, and
Nix
,
W. D.
,
2006
, “
Nanoscale Gold Pillars Strengthened Through Dislocation Starvation
,”
Phys. Rev. B.
,
73
(
24
), p.
245410
.
15.
Cordill
,
M. J.
,
Chambers
,
M. D.
,
Lund
,
M. S.
,
Hallman
,
D. M.
,
Perrey
,
C. R.
,
Carter
,
C. B.
,
Bapat
,
A.
,
Kortshagen
,
U.
, and
Gerberich
,
W. W.
,
2006
, “
Plasticity Responses in Ultra-Small Confined Cubes and Films
,”
Acta Mater.
,
54
(
17
), pp.
4515
4523
.
16.
Li
,
J.
,
2007
, “
The Mechanics and Physics of Defect Nucleation
,”
MRS Bull.
,
32
(
2
), pp.
151
159
.
17.
Oh
,
S. H.
,
Kiener
,
D.
,
Legros
,
M.
, and
Dehm
,
G.
,
2009
, “
In Situ Observation of Dislocation Nucleation and Escape in a Submicrometric Aluminum Single Crystal
,”
Nat. Mater.
,
8
(
2
), pp.
95
100
.
18.
Lu
,
Y.
,
Song
,
J.
,
Huang
,
J. J.
, and
Lou
,
J.
,
2011
, “
Surface Dislocation Nucleation Mediated Deformation and Ultrahigh Strength in Sub-10-nm Gold Nanowires
,”
Nano Res.
,
4
(
12
), pp.
1261
1267
.
19.
Jennings
,
A. T.
,
Li
,
J.
, and
Greer
,
J. R.
,
2011
, “
Emergence of Strain-Rate Sensitivity in Cu Nanopillars: Transition From Dislocation Multiplication to Dislocation Nucleation
,”
Acta Mater.
,
59
(
14
), pp.
5627
5637
.
20.
Gerberich
,
W. W.
,
Oriani
,
R. A.
,
Lji
,
M. J.
,
Chen
,
X.
, and
Foecke
,
T.
,
1991
, “
The Necessity of Both Plasticity and Brittleness in the Fracture Thresholds of Iron
,”
Philos. Mag. A
,
63
(
2
), pp.
363
376
.
21.
Jiang
,
D. E.
, and
Carter
,
E. A.
,
2004
, “
First Principles Assessment of Ideal Fracture Energies of Materials With Mobile Impurities: Implications for Hydrogen Embrittlement of Metals
,”
Acta Mater.
,
52
(
16
), pp.
4801
4807
.
22.
Song
,
J.
,
Soare
,
M.
, and
Curtin
,
W. A.
,
2010
, “
Testing Continuum Concepts for Hydrogen Embrittlement in Metals Using Atomistics
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
4
), p.
045003
.
23.
Tehranchi
,
A.
,
Zhou
,
X.
, and
Curtin
,
W. A.
,
2020
, “
A Decohesion Pathway for Hydrogen Embrittlement in Nickel: Mechanism and Quantitative Prediction
,”
Acta Mater.
,
185
, pp.
98
109
.
24.
Zhou
,
X.
,
Tehranchi
,
A.
, and
Curtin
,
W. A.
,
2021
, “
Mechanism and Prediction of Hydrogen Embrittlement in FCC Stainless Steels and High Entropy Alloys
,”
Phys. Rev. Lett.
,
127
(
17
), p.
175501
.
25.
Liang
,
S.
,
Huang
,
M.
,
Zhao
,
L.
,
Zhu
,
Y.
, and
Li
,
Z.
,
2021
, “
Effect of Multiple Hydrogen Embrittlement Mechanisms on Crack Propagation Behavior of FCC Metals: Competition vs. Synergy
,”
Int. J. Plast.
,
143
, p.
103023
.
26.
Yuan
,
S.
,
Zhu
,
Y.
,
Zhao
,
L.
,
Liang
,
S.
,
Huang
,
M.
, and
Li
,
Z.
,
2022
, “
Key Role of Plastic Strain Gradient in Hydrogen Transport in Polycrystalline Materials
,”
Int. J. Plasticity
,
158
, p.
103409
.
27.
Gu
,
T.
,
Wang
,
B.
,
Zhu
,
T.
,
Castelluccio
,
G. M.
, and
McDowell
,
D. L.
,
2025
, “
Two-Way Coupled Modeling of Dislocation Substructure Sensitive Crystal Plasticity and Hydrogen Diffusion at the Crack tip of FCC Single Crystals
,”
Int. J. Solids Struct.
,
306
, p.
113072
.
28.
Barnoush
,
A.
, and
Vehoff
,
H.
,
2006
, “
Electrochemical Nanoindentation: A New Approach to Probe Hydrogen/Deformation Interaction
,”
Scr. Mater.
,
55
(
2
), pp.
195
198
.
29.
Barnoush
,
A.
, and
Vehoff
,
H.
,
2010
, “
Recent Developments in the Study of Hydrogen Embrittlement: Hydrogen Effect on Dislocation Nucleation
,”
Acta Mater.
,
58
(
16
), pp.
5274
5285
.
30.
Zhou
,
X.
,
Ouyang
,
B.
,
Curtin
,
W. A.
, and
Song
,
J.
,
2016
, “
Atomistic Investigation of the Influence of Hydrogen on Dislocation Nucleation During Nanoindentation in Ni and Pd
,”
Acta Mater.
,
116
, pp.
364
369
.
31.
Chen
,
Y.
,
Zhang
,
Y.
, and
Chen
,
D.
,
2023
, “
Hydrogen-Enhanced Homogeneous Dislocation Nucleation of Nanoindentation in Nickel
,”
Mater. Today Commun.
,
37
, p.
107289
.
32.
Wei
,
R. P.
,
Pao
,
P. S.
,
Hart
,
R. G.
,
Weir
,
T. W.
, and
Simmons
,
G. W.
,
1980
, “
Fracture Mechanics and Surface Chemistry Studies of Fatigue Crack Growth in an Aluminum Alloy
,”
Metall. Mater. Trans. A
,
11
(
1
), pp.
151
158
.
33.
Murakami
,
Y.
,
Kanezaki
,
T.
,
Mine
,
Y.
, and
Matsuoka
,
S.
,
2008
, “
Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels
,”
Metall. Mater. Trans. A
,
39
(
6
), pp.
1327
1339
.
34.
Zamora
,
R. J.
,
Baker
,
K. L.
, and
Warner
,
D. H.
,
2015
, “
Illuminating the Chemo-Mechanics of Hydrogen Enhanced Fatigue Crack Growth in Aluminum Alloys
,”
Acta Mater.
,
100
, pp.
232
239
.
35.
Lynch
,
S.
,
2019
, “
Discussion of Some Recent Literature on Hydrogen-Embrittlement Mechanisms: Addressing Common Misunderstandings
,”
Corros. Rev.
,
37
(
5
), pp.
377
395
.
36.
Clum
,
J. A.
,
1975
, “
The Role of Hydrogen in Dislocation Generation in Iron Alloys
,”
Scr. Metall.
,
9
(
1
), pp.
51
58
.
37.
Song
,
J.
, and
Curtin
,
W. A.
,
2011
, “
A Nanoscale Mechanism of Hydrogen Embrittlement in Metals
,”
Acta Mater.
,
59
(
4
), pp.
1557
1569
.
38.
Song
,
J.
, and
Curtin
,
W. A.
,
2013
, “
Atomic Mechanism and Prediction of Hydrogen Embrittlement in Iron
,”
Nat. Mater.
,
12
(
2
), pp.
145
151
.
39.
Yin
,
S.
,
Cheng
,
G.
,
Chang
,
T.-H.
,
Richter
,
G.
,
Zhu
,
Y.
, and
Gao
,
H.
,
2019
, “
Hydrogen Embrittlement in Metallic Nanowires
,”
Nat. Commun.
,
10
(
1
), p.
2004
.
40.
Zhu
,
T.
,
Li
,
J.
,
Samanta
,
A.
,
Leach
,
A.
, and
Gall
,
K.
,
2008
, “
Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation
,”
Phys. Rev. Lett.
,
100
(
2
), p.
025502
.
41.
Warner
,
D. H.
, and
Curtin
,
W. A.
,
2009
, “
Origins and Implications of Temperature-Dependent Activation Energy Barriers for Dislocation Nucleation in Face-Centered Cubic Metals
,”
Acta Mater.
,
57
(
14
), pp.
4267
4277
.
42.
Ryu
,
S.
,
Kang
,
K.
, and
Cai
,
W.
,
2011
, “
Entropic Effect on the Rate of Dislocation Nucleation
,”
Proc. Natl. Acad. Sci. USA
,
108
(
13
), pp.
5174
5178
.
43.
Ryu
,
S.
,
Kang
,
K.
, and
Cai
,
W.
,
2013
, “
Predicting the Dislocation Nucleation Rate as a Function of Temperature and Stress
,”
J. Mater. Res.
,
26
(
18
), pp.
2335
2354
.
44.
Li
,
Q.
,
Xu
,
B.
,
Hara
,
S.
,
Li
,
J.
, and
Ma
,
E.
,
2018
, “
Sample-Size-Dependent Surface Dislocation Nucleation in Nanoscale Crystals
,”
Acta Mater.
,
145
, pp.
19
29
.
45.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
46.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
in’t Veld
,
P. J.
, et al.
,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
10817
.
47.
Angelo
,
J. E.
,
Moody
,
N. R.
, and
Baskes
,
M. I.
,
1995
, “
Trapping of Hydrogen to Lattice Defects in Nickel
,”
Model. Simul. Mater. Sci. Eng.
,
3
(
3
), pp.
289
307
.
48.
Wen
,
M.
,
Barnoush
,
A.
, and
Yokogawa
,
K.
,
2011
, “
Calculation of All Cubic Single-Crystal Elastic Constants From Single Atomistic Simulation: Hydrogen Effect and Elastic Constants of Nickel
,”
Comput. Phys. Commun.
,
182
(
8
), pp.
1621
1625
.
49.
Koyama
,
M.
,
Taheri-Mousavi
,
S. M.
,
Yan
,
H.
,
Kim
,
J.
,
Cameron
,
B. C.
,
Moeini-Ardakani
,
S. S.
,
Li
,
J.
, and
Tasan
,
C. C.
,
2020
, “
Origin of Micrometer-Scale Dislocation Motion During Hydrogen Desorption
,”
Sci. Adv.
,
6
(
23
), p.
eaaz1187
.
50.
Guo
,
J.
,
Zhang
,
Y.
, and
Chen
,
D.
,
2023
, “
Hydrogen-Induced Attractive Force Between two Partials of Edge Dislocation in Nickel
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071007
.
51.
Johnson
,
R. A.
,
Miller
,
I.
, and
Freund
,
J. E.
,
2000
,
Probability and Statistics for Engineers
,
Pearson
,
London
.
52.
Chen
,
D.
,
Xu
,
S.
, and
Kulkarni
,
Y.
,
2020
, “
Atomistic Mechanism for Vacancy-Enhanced Grain Boundary Migration
,”
Phys. Rev. Mater.
,
4
(
3
), p.
033602
.
53.
Wang
,
Y.
, and
Cai
,
W.
,
2023
, “
Stress-Dependent Activation Entropy in Thermally Activated Cross-Slip of Dislocation
,”
Proc. Natl. Acad. Sci. USA
,
120
(
34
), p.
e2222039120
.
54.
Abdullaev
,
R. N.
,
Kozlovskii
,
Y. M.
,
Khairulin
,
R. A.
, and
Stankus
,
S. V.
,
2015
, “
Density and Thermal Expansion of High Purity Nickel Over the Temperature Range From 150 K to 2030 K
,”
Int. J. Thermophys.
,
36
(
4
), pp.
603
619
.
You do not currently have access to this content.