Graphical Abstract Figure

(a) The schematic illustration of the spherical oscillatory indentation and (b) the schematic representation of the imposed displacement and resultant force. The phase angle can be observed in the zoom-in view.

Graphical Abstract Figure

(a) The schematic illustration of the spherical oscillatory indentation and (b) the schematic representation of the imposed displacement and resultant force. The phase angle can be observed in the zoom-in view.

Close modal

Abstract

The oscillatory indentation has become an attractive approach to characterizing the viscoelastic properties of soft biological solids. However, the influences of surface tension on oscillatory responses are ignored, which might lead to an inaccurate measurement of mechanical properties. In this work, the influences of surface tension on spherical oscillatory indentation for viscoelastic materials are investigated through the finite element method. The viscoelasticity of solids is characterized by the standard linear solid model and a sinusoidal displacement is applied as the excitation signal. During an entire cycle at the steady-state of oscillation, both the average value of contact radius and the dissipated energy decrease due to the presence of surface tension. For the oscillatory responses at various frequencies, the existence of surface tension results in an increase in average force but a decrease in phase angle. The force amplitude at low frequencies becomes higher when surface tension is considered. For the evaluation of the complex modulus, neglecting the surface tension would lead to a significant overestimation of storage modulus at low frequencies and an obvious underestimation of loss modulus when the normalized frequency approaches one. Our results provide a comprehensive understanding of the effects of surface tension on the mechanical responses of oscillation and the determination of viscoelastic properties through oscillatory indentation.

References

1.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
2.
Efremov
,
Y. M.
,
Okajima
,
T.
, and
Raman
,
A.
,
2020
, “
Measuring Viscoelasticity of Soft Biological Samples Using Atomic Force Microscopy
,”
Soft Matter
,
16
(
1
), pp.
64
81
.
3.
Johnson
,
K.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
4.
Sneddon
,
I. N.
,
1965
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
3
(
1
), pp.
47
57
.
5.
Krieg
,
M.
,
Fläschner
,
G.
,
Alsteens
,
D.
,
Gaub
,
B. M.
,
Roos
,
W. H.
,
Wuite
,
G. J. L.
,
Gaub
,
H. E.
,
Gerber
,
C.
,
Dufrêne
,
Y. F.
, and
Müller
,
D. J.
,
2019
, “
Atomic Force Microscopy-Based Mechanobiology
,”
Nat. Rev. Phys.
,
1
(
1
), pp.
41
57
.
6.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2022
, “
Viscoelastic Dissipation in Repeated Normal Indentation of an Hertzian Profile
,”
Int. J. Solids Struct.
,
236–237
, p.
111362
.
7.
Magerle
,
R.
,
Zech
,
P.
,
Dehnert
,
M.
,
Bendixen
,
A.
, and
Otto
,
A.
,
2024
, “
Rate-Independent Hysteretic Energy Dissipation in Collagen Fibrils
,”
Soft Matter
,
20
(
12
), pp.
2831
2839
.
8.
Weber
,
A.
,
Tyrakowski
,
D.
, and
Toca-Herrera
,
J. L.
,
2022
, “
Power Laws Describe Bacterial Viscoelasticity
,”
Langmuir
,
38
(
50
), pp.
15552
15558
.
9.
Mierke
,
C. T.
,
2021
, “
Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics
,”
Front. Cell Dev. Biol.
,
9
, p.
785138
.
10.
Sheng
,
J.-Y.
,
Mo
,
C.
,
Li
,
G.-Y.
,
Zhao
,
H.-C.
,
Cao
,
Y.
, and
Feng
,
X.-Q.
,
2021
, “
AFM-Based Indentation Method for Measuring the Relaxation Property of Living Cells
,”
J. Biomech.
,
122
, p.
110444
.
11.
Jannati
,
S.
,
Maaref
,
Y.
,
Tibbits
,
G. F.
, and
Chiao
,
M.
,
2023
, “
Investigating Viscoelastic Properties of Myofibrils Isolated From hiPSC-CMs Using Atomic Force Microscopy and Quasi-Linear Viscoelastic Model
,”
ASME J. Appl. Mech.
,
91
(
1
), p.
011009
.
12.
Lim
,
C. T.
,
Zhou
,
E. H.
, and
Quek
,
S. T.
,
2006
, “
Mechanical Models for Living Cells—A Review
,”
J. Biomech.
,
39
(
2
), pp.
195
216
.
13.
Smith
,
B. A.
,
Tolloczko
,
B.
,
Martin
,
J. G.
, and
Grütter
,
P.
,
2005
, “
Probing the Viscoelastic Behavior of Cultured Airway Smooth Muscle Cells With Atomic Force Microscopy: Stiffening Induced by Contractile Agonist
,”
Biophys. J.
,
88
(
4
), pp.
2994
3007
.
14.
Nalam
,
P. C.
,
Gosvami
,
N. N.
,
Caporizzo
,
M. A.
,
Composto
,
R. J.
, and
Carpick
,
R. W.
,
2015
, “
Nano-Rheology of Hydrogels Using Direct Drive Force Modulation Atomic Force Microscopy
,”
Soft Matter
,
11
(
41
), pp.
8165
8178
.
15.
VanLandingham
,
M. R.
,
2003
, “
Review of Instrumented Indentation
,”
J. Res. Natl. Inst. Stand. Technol.
,
108
(
4
), pp.
249
265
.
16.
Cheng
,
Y.-T.
,
Ni
,
W.
, and
Cheng
,
C.-M.
,
2006
, “
Nonlinear Analysis of Oscillatory Indentation in Elastic and Viscoelastic Solids
,”
Phys. Rev. Lett.
,
97
(
7
), p.
075506
.
17.
Koruk
,
H.
,
Koc
,
H. O.
,
Yurdaer
,
S. B.
,
Besli
,
A.
, and
Pouliopoulos
,
A. N.
,
2024
, “
A New Approach for Measuring Viscoelastic Properties of Soft Materials Using the Dynamic Response of a Spherical Object Placed at the Sample Interface
,”
Exp. Mech.
,
64
(
1
), pp.
21
32
.
18.
Chen
,
S.-W.
,
Liang
,
X.-M.
, and
Wang
,
G.-F.
,
2024
, “
Influence of Adhesion on Oscillatory Indentations of Viscoelastic Biomaterials by a Rigid Cone
,”
J. Phys. D: Appl. Phys.
,
57
(
31
), p.
315401
.
19.
Rother
,
J.
,
Nöding
,
H.
,
Mey
,
I.
, and
Janshoff
,
A.
,
2014
, “
Atomic Force Microscopy-Based Microrheology Reveals Significant Differences in the Viscoelastic Response Between Malign and Benign Cell Lines
,”
Open Biol.
,
4
(
5
), p.
140046
.
20.
Mahaffy
,
R. E.
,
Shih
,
C. K.
,
MacKintosh
,
F. C.
, and
Käs
,
J.
,
2000
, “
Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells
,”
Phys. Rev. Lett.
,
85
(
4
), pp.
880
883
.
21.
Alcaraz
,
J.
,
Buscemi
,
L.
,
Grabulosa
,
M.
,
Trepat
,
X.
,
Fabry
,
B.
,
Farré
,
R.
, and
Navajas
,
D.
,
2003
, “
Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy
,”
Biophys. J.
,
84
(
3
), pp.
2071
2079
.
22.
Rigato
,
A.
,
Miyagi
,
A.
,
Scheuring
,
S.
, and
Rico
,
F.
,
2017
, “
High-Frequency Microrheology Reveals Cytoskeleton Dynamics in Living Cells
,”
Nat. Phys.
,
13
(
8
), pp.
771
775
.
23.
Loubet
,
J. L.
,
Oliver
,
W. C.
, and
Lucas
,
B. N.
,
2000
, “
Measurement of the Loss Tangent of Low-Density Polyethylene With a Nanoindentation Technique
,”
J. Mater. Res.
,
15
(
5
), pp.
1195
1198
.
24.
Odegard
,
G. M.
,
Gates
,
T. S.
, and
Herring
,
H. M.
,
2005
, “
Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation
,”
Exp. Mech.
,
45
(
2
), pp.
130
136
.
25.
Lee
,
E. H.
, and
Radok
,
J. R. M.
,
1960
, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
,
27
(
3
), pp.
438
444
.
26.
Ting
,
T. C. T.
,
1966
, “
The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
845
854
.
27.
Huang
,
G.
,
Wang
,
B.
, and
Lu
,
H.
,
2004
, “
Measurements of Viscoelastic Functions of Polymers in the Frequency-Domain Using Nanoindentation
,”
Mech. Time-Depend. Mater.
,
8
(
4
), pp.
345
364
.
28.
Cao
,
Y.
,
Ma
,
D.
, and
Raabe
,
D.
,
2009
, “
The Use of Flat Punch Indentation to Determine the Viscoelastic Properties in the Time and Frequency Domains of a Soft Layer Bonded to a Rigid Substrate
,”
Acta Biomater.
,
5
(
1
), pp.
240
248
.
29.
Cao
,
Y.
,
Ji
,
X.
, and
Feng
,
X.
,
2011
, “
On Determination of the Damping Factor of Linear Viscoelastic Materials Using Dynamic Indentation: A Theoretical Study
,”
Sci. China Phys. Mech.
,
54
(
4
), pp.
598
605
.
30.
Style
,
R. W.
,
Boltyanskiy
,
R.
,
Che
,
Y.
,
Wettlaufer
,
J. S.
,
Wilen
,
L. A.
, and
Dufresne
,
E. R.
,
2013
, “
Universal Deformation of Soft Substrates Near a Contact Line and the Direct Measurement of Solid Surface Stresses
,”
Phys. Rev. Lett.
,
110
(
6
), p.
066103
.
31.
Jagota
,
A.
,
Paretkar
,
D.
, and
Ghatak
,
A.
,
2012
, “
Surface-Tension-Induced Flattening of a Nearly Plane Elastic Solid
,”
Phys. Rev. E
,
85
(
5
), p.
051602
.
32.
Ding
,
Y.
,
Wang
,
J.
,
Xu
,
G. K.
, and
Wang
,
G. F.
,
2018
, “
Are Elastic Moduli of Biological Cells Depth Dependent or Not? Another Explanation Using a Contact Mechanics Model With Surface Tension
,”
Soft Matter
,
14
(
36
), pp.
7534
7541
.
33.
Cui
,
Y.
,
Leong
,
W.-H.
,
Liu
,
C.-F.
,
Xia
,
K.
,
Feng
,
X.
,
Gergely
,
C.
,
Liu
,
R.-B.
, and
Li
,
Q.
,
2022
, “
Revealing Capillarity in AFM Indentation of Cells by Nanodiamond-Based Nonlocal Deformation Sensing
,”
Nano Lett.
,
22
(
10
), pp.
3889
3896
.
34.
Hajji
,
M.
,
1978
, “
Indentation of a Membrane on an Elastic Half Space
,”
ASME J. Appl. Mech.
,
45
(
2
), pp.
320
324
.
35.
He
,
L. H.
, and
Lim
,
C. W.
,
2006
, “
Surface Green Function for a Soft Elastic Half-Space: Influence of Surface Stress
,”
Int. J. Solids Struct.
,
43
(
1
), pp.
132
143
.
36.
Koguchi
,
H.
,
2008
, “
Surface Green Function With Surface Stresses and Surface Elasticity Using Stroh’s Formalism
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061014
.
37.
Chen
,
W. Q.
, and
Zhang
,
C.
,
2010
, “
Anti-Plane Shear Green’s Functions for an Isotropic Elastic Half-Space With a Material Surface
,”
Int. J. Solids Struct.
,
47
(
11–12
), pp.
1641
1650
.
38.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2007
, “
Effects of Surface Stresses on Contact Problems at Nanoscale
,”
J. Appl. Phys.
,
101
(
1
), p.
013510
.
39.
Long
,
J.
,
Ding
,
Y.
,
Yuan
,
W.
,
Chen
,
W.
, and
Wang
,
G.
,
2017
, “
General Relations of Indentations on Solids With Surface Tension
,”
ASME J. Appl. Mech.
,
84
(
5
), pp.
051007
051008
.
40.
Gao
,
X.
,
Hao
,
F.
,
Fang
,
D.
, and
Huang
,
Z.
,
2013
, “
Boussinesq Problem With the Surface Effect and Its Application to Contact Mechanics at the Nanoscale
,”
Int. J. Solids Struct.
,
50
(
16
), pp.
2620
2630
.
41.
Xu
,
X.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2014
, “
Effects of Surface Tension on the Adhesive Contact of a Rigid Sphere to a Compliant Substrate
,”
Soft Matter
,
10
(
26
), pp.
4625
4632
.
42.
Zhao
,
X. J.
, and
Rajapakse
,
R. K. N. D.
,
2009
, “
Analytical Solutions for a Surface-Loaded Isotropic Elastic Layer With Surface Energy Effects
,”
Int. J. Eng. Sci.
,
47
(
11–12
), pp.
1433
1444
.
43.
Hui
,
C.-Y.
, and
Jagota
,
A.
,
2016
, “
Effect of Surface Tension on the Relaxation of a Viscoelastic Half-Space Perturbed by a Point Load
,”
J. Polym. Sci., Part B: Polym. Phys.
,
54
(
2
), pp.
274
280
.
44.
Rauker
,
J.
,
Moshtagh
,
P. R.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2014
, “
Analytical Relationships for Nanoindentation-Based Estimation of Mechanical Properties of Biomaterials
,”
J. Mech. Med. Biol.
,
14
(
03
), p.
1430004
.
45.
Efremov
,
Y. M.
,
Wang
,
W.-H.
,
Hardy
,
S. D.
,
Geahlen
,
R. L.
, and
Raman
,
A.
,
2017
, “
Measuring Nanoscale Viscoelastic Parameters of Cells Directly From AFM Force-Displacement Curves
,”
Sci. Rep.
,
7
(
1
), p.
1541
.
46.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2021
, “
Viscoelastic Normal Indentation of Nominally Flat Randomly Rough Contacts
,”
Int. J. Mech. Sci.
,
211
, p.
106783
.
47.
Niu
,
T. X.
, and
Cao
,
G. X.
,
2014
, “
Power-Law Rheology Characterization of Biological Cell Properties Under AFM Indentation Measurement
,”
RSC Adv.
,
4
(
55
), pp.
29291
29299
.
48.
Cammarata
,
R. C.
,
1994
, “
Surface and Interface Stress Effects in Thin-Films
,”
Prog. Surf. Sci.
,
46
(
1
), pp.
1
38
.
49.
Feller
,
S. E.
, and
Pastor
,
R. W.
,
1999
, “
Constant Surface Tension Simulations of Lipid Bilayers: The Sensitivity of Surface Areas and Compressibilities
,”
J. Chem. Phys.
,
111
(
3
), pp.
1281
1287
.
50.
Cao
,
G.
, and
Chandra
,
N.
,
2010
, “
Evaluation of Biological Cell Properties Using Dynamic Indentation Measurement
,”
Phys. Rev. E
,
81
(
2
), p.
021924
.
You do not currently have access to this content.