Abstract

A homogenized elasto-plastic constitutive law (including both constitutive equations and inversed constitutive equations) is proposed in an incremental form for the particle-reinforced composites based on the flow theory of plasticity and the asymptotic homogenization method. The constitutive law can be used to predict the mixed hardening behavior of particle-reinforced composites under arbitrary loading conditions if the uniaxial tension test curve of matrix materials is known. It is found that the constitutive law of particle-reinforced composites is similar in form to the law of matrix materials. There is a simple proportional relationship between the yield stress, the plastic modulus, and the deviatoric back stress of particle-reinforced composites and the corresponding parameters of matrix materials, which is equal to the ratio of the shear modulus of composites to the shear modulus of matrix materials. The tangent modulus of particle-reinforced composites can be calculated using a simple arithmetic formula according to the tangent modulus of matrix materials. A numerical algorithm is suggested.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kröner
,
E.
,
1958
, “
Berechnung der Elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls
,”
Z. Phys.
,
151
(
4
), pp.
504
518
.
2.
Budiansky
,
B.
,
Hashin
,
Z.
, and
Sanders
,
J. L.
,
1960
, “
The Stress Field of a Slipped Crystal and the Early Plastic Behavior of Polycrystalline Materials
,”
In: Plasticity, Proceeding of the second Symposium Naval Structural Mechanics
,
Pergamon, Oxford
, p.
239
.
3.
Hill
,
R.
,
1965
, “
Continuum Micromechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
(
2
), pp.
89
101
.
4.
Hill
,
R.
,
1967
, “
The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
15
(
2
), pp.
79
95
.
5.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problem
,”
Proc. R. Soc. Lond. A
,
421
, pp.
376
396
.
6.
Berveiller
,
M.
, and
Zaoui
,
A.
,
1979
, “
An Extension of the Self-Consistent Scheme to Plastically Flowing Polycrystals
,”
J. Mech. Phys. Solids
,
26
(
5–6
), pp.
325
344
.
7.
Tandon
,
G. P.
, and
Weng
,
G. J.
,
1990
, “
The Overall Elastoplastic Stress-Strain Relations of Dual Phase Metals
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
419
441
.
8.
Molinari
,
A.
,
Canova
,
G. R.
, and
Ahzi
,
S.
,
1987
, “
A Self-Consistent Approach of the Large Deformation Polycristal Viscoplasticity
,”
Acta. Metall.
,
35
(
12
), pp.
2983
2994
.
9.
Suquet
,
P. M.
,
1987
, “Elements of Homogenisation for Inelastic Solid Mechanics,”
Homogenization Techniques for Composite Media: Lecture Notes in Physics
, Vol.
272
,
E.
Sanchez-Palencia
, and
A.
Zaoui
, eds.,
Springer
,
New York
, pp.
193
278
.
10.
Suquet
,
P. M.
, et al
,
1988
, “Discontinuities and Plasticity,”
Nonsmooth Mechanics and Applications
,
J. J.
Moreau
, ed.,
Springer-Verlag
,
Wien
, pp.
279
340
.
11.
Suquet
,
P. M.
,
1993
, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
981
100
.
12.
Suquet
,
P. M.
,
1995
, “
Overall Properties of Nonlinear Composites: a Modified Secant Moduli Theory and Its Link With Ponte Castañeda's Nonlinear Variational Procedure
,”
C.R. Acad. Sci., Ser. II: Mec., Phys., Chim., Astron.
,
320
, pp.
563
571
.
13.
Brenner
,
R.
,
Castelnau
,
O.
, and
Gilormini
,
P.
,
2001
, “
A Modified Affine Theory for the Overall Properties of Nonlinear Composites
,”
C.R. Acad. Sci., Ser. IIb: Mec.
,
329
(
9
), pp.
649
654
.
14.
Aboudi
,
J.
,
1982
, “
A Continuum Theory for Fiber-Reinforced Elastoviscoplastic Composites
,”
Int. J. Eng. Sci.
,
20
(
5
), pp.
605
621
.
15.
Aboudi
,
J.
,
1988
, “
Constitutive Equations for Elastoplastic Composites With Imperfect Bonding
,”
Int. J. Plast.
,
4
(
2
), pp.
103
125
.
16.
Aboudi
,
J.
,
1991
,
Mechanics of Composite Materials—A Unified Micromechanical Approach
,
Elsevier
,
New York
.
17.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
,
2003
, “
Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases
,”
Int. J. Plast.
,
19
(
6
), pp.
805
847
.
18.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P. M.
,
2000
, “
A Computational Method Based on Augmented Lagrangians and Fast Fourier Transforms for Composites With High Contrast
,”
Comput. Modell. Eng. Sci.
,
1
(
2
), p.
79
.
19.
Feyel
,
F.
, and
Chaboche
,
J. L.
,
2000
, “
FE2 Multiscale Approach for Modelling the Elastoviscoplastic Behaviour of Long Fiber SiC/Ti Composite Materials
,”
Comput. Meth. Appl. Mech. Eng.
,
183
(
3–4
), pp.
309
330
.
20.
Feyel
,
F.
, and
Chaboche
,
J. L.
,
2001
, “Multi-scale Nonlinear FE2 Analysis of Composite Structures: Damage and Fiber Size Effects,”
Numerical Modelling in Damage Mechanics—NUMEDAM’00, Revue Europèenne des Elèments Finis
,
K.
Saanouni
, Vol.
10
, pp.
449
472
.
21.
Feyel
,
F.
, and
Chaboche
,
J. L.
,
2003
, “
A Multilevel Finite Element Method (FE2) to Describe the Response of Highly non-Linear Structures Using Generalized Continua
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
28–30
), pp.
3233
3244
.
22.
Gonzales
,
C.
,
Segurado
,
J.
, and
Llorca
,
J.
,
2004
, “
Numerical Simulation of Elasto-Plastic Deformation of Composites: Evolution of Stress Microfields and Implications for Homogenized Models
,”
J. Mech. Phys. Solids
,
52
(
7
), pp.
1573
1593
.
23.
Kouznetsova
,
V. G.
,
Geers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
,
2004
, “
Multiscale Second Order Computational Homogenisation of Multi-Phase Materials: A Nested Finite Element Strategy
,”
Comput. Meth. Appl. Mech. Eng.
,
193
(
48–51
), pp.
5525
5550
.
24.
Markovic
,
D.
, and
Ibrahimbegovic
,
A.
,
2004
, “
On Micro-Macro Interface Conditions for Micro Scale Based FEM for Inelastic Behavior of Heterogeneous Materials
,”
Comput. Meth. Appl. Mech. Eng.
,
193
(
48–51
), pp.
5503
5523
.
25.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
45
71
.
26.
Ponte Castañeda
,
P.
,
1992
, “
New Variational Principles in Plasticity and Their Application to Composite Materials
,”
J. Mech. Phys. Solids
,
40
(
8
), pp.
1757
1788
.
27.
Ponte Castañeda
,
P.
,
1996
, “
Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
827
862
.
28.
Ponte Castañeda
,
P.
,
2002
, “
Second-Order Homogenisation Estimates for Nonlinear Composites Incorporating Field Fluctuations: I—Theory
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
737
757
.
29.
Ponte Castañeda
,
P.
,
2002
, “
Second-order Homogenisation Estimates for Nonlinear Composites Incorporating Field Fluctuations: II—Applications
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
759
782
.
30.
Ponte Castañeda
,
P.
,
2012
, “
Bounds for Nonlinear Composites via Iterated Homogenization
,”
J. Mech. Phys. Solids
,
60
(
9
), pp.
1583
1604
.
31.
Ponte Castañeda
,
P.
, and
Suquet
,
P.
,
1998
, “
Nonlinear Composites
,”
Adv. Appl. Mech.
,
34
, pp.
171
302
.
32.
Chaboche
,
J.-L.
,
Kruch
,
S.
,
Maire
,
J.-F.
, and
Pottier
,
T.
,
2001
, “
Towards a Micromechanics Based Inelastic and Damage Modelling of Composites
,”
Int. J. Plast.
,
17
(
4
), pp.
411
439
.
33.
Chaboche
,
J.-L.
,
Kanouté
,
P.
, and
Roos
,
A.
,
2005
, “
On the Capabilities of Mean-Field Approaches for the Description of Plasticity in Metal Matrix Composites
,”
Int. J. Plast.
,
21
(
7
), pp.
1409
1434
.
34.
Mercier
,
S.
,
Jacques
,
N.
, and
Molinari
,
A.
,
2005
, “
Validation of an Interaction Law for the Eshelby Inclusion Problem in Elasto-Viscoplasticity
,”
Int. J. Solids Struct.
,
42
(
7
), pp.
1923
1941
.
35.
Lahellec
,
N.
, and
Suquet
,
P.
,
2007
, “
On the Effective Behavior of Nonlinear Inelastic Composites: I. Incremental Variational Principles
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1932
1963
.
36.
Lahellec
,
N.
, and
Suquet
,
P.
,
2007
, “
On the Effective Behavior of Nonlinear Inelastic Composites: II. A Second-Order Procedure
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1964
1992
.
37.
Lahellec
,
N.
, and
Suquet
,
P.
,
2013
, “
Effective Response and Field Statistics in Elasto-Plastic and Elasto-Visco-Plastic Composites Under Radial and Non-Radial Loadings
,”
Int. J. Plast.
,
42
, pp.
1
30
.
38.
Mercier
,
S.
, and
Molinari
,
A.
,
2009
, “
Homogenization of Elastic-Visco-Plastic Heterogeneous Materials: Self-Consistent and Mori-Tanaka Schemes
,”
Int. J. Plast.
,
25
(
6
), pp.
1024
1048
.
39.
Doghri
,
I.
,
Adam
,
L.
, and
Bilger
,
N.
,
2010
, “
Mean-Field Homogenization of Elasto-Visco-Plastic Composites Based on a General Affine Linearization Method
,”
Int. J. Plast.
,
26
(
2
), pp.
219
238
.
40.
Agoras
,
M.
, and
Ponte Castañeda
,
P.
,
2011
, “
Homogenization Estimates for Multi-Scale Nonlinear Composites
,”
Eur. J. Mech. A/Solids
,
30
(
6
), pp.
828
843
.
41.
Agoras
,
M.
, and
Ponte Castañeda
,
P.
,
2013
, “
Iterated Linear Comparison Bounds for Visco– Plastic Porous Materials With “Ellipsoidal” Microstructures
,”
J. Mech. Phys. Solids
,
61
(
3
), pp.
701
725
.
42.
Brassart
,
L.
,
Stainier
,
L.
,
Doghri
,
I.
, and
Delannay
,
L.
,
2011
, “
A Variational Formulation for the Incremental Homogenization of Elasto-Plastic Composites
,”
J. Mech. Phys. Solids
,
59
(
12
), pp.
2455
2475
.
43.
Brassart
,
L.
,
Stainier
,
L.
,
Doghri
,
I.
, and
Delannay
,
L.
,
2012
, “
Homogenization of Elasto-(Visco) Plastic Composites Based on an Incremental Variational Principle
,”
Int. J. Plast.
,
36
, pp.
86
112
.
44.
Lahellec
,
N.
,
Ponte Castañeda
,
P.
, and
Suquet
,
P.
,
2011
, “
Variational Estimates for the Effective Response and Field Statistics in Thermoelastic Composites With Intra-Phase Property Fluctuations
,”
Proc. R. Soc. Lond. A
,
467
, pp.
2224
2246
.
45.
Badulescu
,
C.
,
Lahellec
,
N.
, and
Suquet
,
P.
,
2015
, “
Field Statistics in Linear Viscoelastic Composites and Polycrystals
,”
Eur. J. Mech. A/Solids
,
49
, pp.
329
344
.
46.
Zhang
,
L.
, and
Yu
,
W.
,
2015
, “
Variational Asymptotic Homogenization of Elastoplastic Composites
,”
Compos. Struct.
,
133
, pp.
947
958
.
47.
Boudet
,
J.
,
Auslender
,
F.
,
Bornert
,
M.
, and
Lapusta
,
Y.
,
2016
, “
An Incremental Variational Formulation for the Prediction of the Effective Work-Hardening Behavior and Field Statistics of Elasto-(Visco)Plastic Composites
,”
Int. J. Solid Struct.
,
83
, pp.
90
113
.
48.
Zheng-Ming
,
H.
, and
Zhou
,
Y.
,
2018
, “
Micromechanical Prediction of a Composite Failure Under Longitudinal Compression
,”
Proceedings of 33rd Technical Conference of the American Society for Composites
,
Seattle, WA
,
Sept. 24–26
, Vol. 3, pp.
1431
1444
.
49.
Kanouté
,
P.
,
Boso
,
D. P.
,
Chaboche
,
J. L.
, and
Schrefler
,
A.
,
2009
, “
Multiscale Methods for Composites: a Review
,”
Arch. Comput. Meth. Eng.
,
16
(
1
), pp.
31
75
.
50.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North-Holland Publ.
,
Amsterdam
.
51.
Sanchez-Palencia
,
E.
,
1980
, “Non-homogeneous Media and Vibration Theory,”
Lect. Notes Phys.
,
Springer-Verlag
,
Berlin
.
52.
Lions
,
L. J.
,
1981
,
Some Methods in the Mathematical Analysis of System and Their Control
,
Gordon and Breach
,
New York
.
53.
Sanchez-Palencia
,
E.
, and
Zaoui
,
A.
,
1985
,
Homogenization Techniques for Composite Media
,
Springer-Verlag
,
Berlin
.
54.
Meguid
,
S. A.
, and
Kalamkarov
,
A. L.
,
1994
, “
Asymptotic Homogenization of Elastic Composite Materials With a Regular Structure
,”
Int. J. Solids Structures
,
31
(
3
), pp.
303
316
.
You do not currently have access to this content.