Abstract

Variational integrators play a pivotal role in the simulation and control of constrained mechanical systems. Current Lagrange multiplier-free variational integrators for such systems are concise but inevitably face issues with parameterization singularities, hindering global integration. To tackle this problem, this paper proposes a novel method for constructing variational integrators on manifolds without introducing Lagrange multipliers, offering the benefit of avoiding singularities. Our approach unfolds in three key steps: (1) the local parameterization of configuration space; (2) the formulation of forced discrete Euler–Lagrange equations on manifolds; and (3) the construction and implementation of high-order variational integrators. Numerical tests are conducted for both conservative and forced mechanical systems, demonstrating the excellent global energy behavior of the proposed variational integrators.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hairer
,
E.
,
Wanner
,
G.
, and
Lubich
,
C.
,
2006
,
Geometric Numerical Integration
, 2nd ed.,
Springer
,
Berlin
.
2.
Sauer
,
T.
,
2011
,
Numerical Analysis
, 2nd ed.,
Pearson
,
Boston, MA
.
3.
Wendlandt
,
J. M.
, and
Marsden
,
J. E.
,
1997
, “
Mechanical Integrators Derived From a Discrete Variational Principle
,”
Phys. D: Nonlinear Phenom.
,
106
(
3–4
), pp.
223
246
.
4.
Kane
,
C.
,
Marsden
,
J. E.
, and
Ortiz
,
M.
,
1999
, “
Symplectic-Energy-Momentum Preserving Variational Integrators
,”
J. Math. Phys.
,
40
(
7
), pp.
3353
3371
.
5.
Hairer
,
E.
, and
Lubich
,
C.
,
1999
, “
Invariant Tori of Dissipatively Perturbed Hamiltonian Systems Under Symplectic Discretization
,”
Appl. Numer. Math.
,
29
(
1
), pp.
57
71
.
6.
Kane
,
C.
,
Marsden
,
J. E.
,
Ortiz
,
M.
, and
West
,
M.
,
2000
, “
Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems
,”
Int. J. Numer. Methods Eng.
,
49
(
10
), pp.
1295
1325
.
7.
Sharma
,
H.
,
Patil
,
M.
, and
Woolsey
,
C.
,
2018
, “
Energy-Preserving Variational Integrators for Forced Lagrangian Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
64
(
1
), pp.
159
177
.
8.
Limebeer
,
D. J. N.
,
Ober-Blobaum
,
S.
, and
Farshi
,
F. H.
,
2020
, “
Variational Integrators for Dissipative Systems
,”
IEEE Trans. Automat. Contr.
,
65
(
4
), pp.
1381
1396
.
9.
Kong
,
X.
,
Wang
,
Z.
, and
Wu
,
H.
,
2022
, “
Variational Integrators for Forced Lagrangian Systems Based on the Local Path Fitting Technique
,”
Appl. Math. Comput.
,
416
(
1
), p.
126739
.
10.
Limebeer
,
D. J. N.
,
Farshi
,
F. H.
, and
Ober-Blöbaum
,
S.
,
2023
, “
Symplectic Integration Schemes for Systems With Nonlinear Dissipation
,”
IEEE Trans. Automat. Contr.
,
68
(
4
), pp.
2338
2351
.
11.
Sharma
,
H.
,
Patil
,
M.
, and
Woolsey
,
C.
,
2020
, “
A Review of Structure-Preserving Numerical Methods for Engineering Applications
,”
Comput. Methods Appl. Mech. Eng.
,
366
(
1
), p.
113067
.
12.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
(
1
), pp.
357
514
.
13.
Lew
,
A.
,
Marsden
,
J. E.
,
Ortiz
,
M.
, and
West
,
M.
,
2004
, “
Variational Time Integrators
,”
Int. J. Numer. Methods Eng.
,
60
(
1
), pp.
153
212
.
14.
Leok
,
M.
, and
Zhang
,
J.
,
2011
, “
Discrete Hamiltonian Variational Integrators
,”
IMA J. Numer. Anal.
,
31
(
4
), pp.
1497
1532
.
15.
Haug
,
E. J.
,
2021
, “
Multibody Dynamics on Differentiable Manifolds
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
4
), p.
041003
.
16.
Haug
,
E. J.
,
2024
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume II: Modern Methods
, 4th ed.,
Ed and Carol Charitable Foundation
,
Silver City, NM
.
17.
Müller
,
A.
, and
Hufnagel
,
T.
,
2012
, “
Model-Based Control of Redundantly Actuated Parallel Manipulators in Redundant Coordinates
,”
Rob. Auton. Syst.
,
60
(
4
), pp.
563
571
.
18.
Leyendecker
,
S.
,
Marsden
,
J.
, and
Ortiz
,
M.
,
2008
, “
Variational Integrators for Constrained Dynamical Systems
,”
ZAMM—J. Appl. Math. Mech.
,
88
(
9
), pp.
677
708
.
19.
Johnson
,
E. R.
, and
Murphey
,
T. D.
,
2009
, “
Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates
,”
IEEE Trans. Robot.
,
25
(
6
), pp.
1249
1261
.
20.
Leyendecker
,
S.
, and
Ober-Blöbaum
,
S.
,
2013
,
A Variational Approach to Multirate Integration for Constrained Systems
,
Springer
,
Dordrecht
, pp.
97
121
.
21.
Muehlebach
,
M.
,
Heimsch
,
T.
, and
Glocker
,
C.
,
2017
, “
Variational Integrators – A Continuous Time Approach
,”
Int. J. Numer. Methods Eng.
,
109
(
11
), pp.
1549
1581
.
22.
Wenger
,
T.
,
Ober-Blöbaum
,
S.
, and
Leyendecker
,
S.
,
2017
, “
Construction and Analysis of Higher Order Variational Integrators for Dynamical Systems With Holonomic Constraints
,”
Adv. Comput. Math.
,
43
(
1
), pp.
1163
1195
.
23.
Man
,
S.
,
Gao
,
Q.
, and
Zhong
,
W.
,
2020
, “
Variational Integrators in Holonomic Mechanics
,”
Mathematics
,
8
(
8
), p.
1358
.
24.
Kinon
,
P. L.
,
Betsch
,
P.
, and
Schneider
,
S.
,
2023
, “
Structure-Preserving Integrators Based on a New Variational Principle for Constrained Mechanical Systems
,”
Nonlinear Dyn.
,
111
(
15
), pp.
14231
14261
.
25.
Brüdigam
,
J.
,
Sosnowski
,
S.
,
Manchester
,
Z.
, and
Hirche
,
S.
,
2023
, “
Variational Integrators and Graph-Based Solvers for Multibody Dynamics in Maximal Coordinates
,”
Multibody System Dynamics
.
26.
Lee
,
Taeyoung
,
Leok
,
Melvin
, and
McClamroch
,
N. Harris
,
2007
, “
Lie Group Variational Integrators for the Full Body Problem
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
29
), pp.
2907
2924
.
27.
Hante
,
S.
, and
Arnold
,
M.
,
2021
, “
RATTLie: A Variational Lie Group Integration Scheme for Constrained Mechanical Systems
,”
J. Comput. Appl. Math.
,
387
(
1
), p.
112492
.
28.
Lee
,
J. M.
,
2012
,
Introduction to Smooth Manifolds
, 2nd ed.,
Springer
,
New York
.
29.
Li
,
H.
, and
Ding
,
Y.
,
2022
, “
A Hamiltonian Formulation on Manifolds for Dynamic Modeling of Constrained Mechanisms and Energy-Preserving Integration
,”
ASME J. Appl. Mech.
,
89
(
12
), p.
121007
.
You do not currently have access to this content.