Abstract

In this work, dynamic mode decomposition (DMD) was applied as an algorithm for determining the natural frequency and damping ratio of viscoelastic lattice structures. The algorithm has been developed based on the Hankel alternative view of Koopman (HAVOK) and DMD . In general, the Hankel matrix is based on time-delay embedding, which is meant for the hidden variable in a time-series data. Vibration properties of a system could be then estimated from the eigenvalues of the approximated Koopman operator. Results of the proposed algorithm were firstly validated with those of the traditional discrete Fourier transform (DFT) approach and half-power bandwidth (HPBW) by using an analytical dataset of multi-modal spring-mass-damper system. Afterward, the algorithm was further used to analyze dynamic responses of viscoelastic lattice structures, in which data from both experimental and numerical finite element (FE) model were considered. It was found that the DMD-based algorithm could accurately estimate the natural frequencies and damping ratios of the examined structures. In particular, it is beneficial to any dataset with limited amounts of data, whereby experiments or data gathering processes are expensive.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chen
,
L.
,
Yuan
,
J.
,
Cai
,
H.
, and
Hu
,
J.
,
2021
, “
Dynamic Model and Dynamic Response of Automobile Dual-Mass Flywheel With Bifilar-Type Centrifugal Pendulum Vibration Absorber
,”
Shock Vib.
,
2021
, pp.
1
26
.
2.
Tian
,
Y.
,
Jin
,
X.
,
Wu
,
L.
,
Yang
,
Y.
,
Wang
,
Y.
, and
Huang
,
Z.
,
2021
, “
Data-Driven Method for Response Control of Nonlinear Random Dynamical Systems
,”
ASME J. Appl. Mech.
,
88
(
4
), p.
041012
.
3.
Medel
,
F.
,
Abad
,
J.
, and
Esteban
,
V.
,
2022
, “
Stiffness and Damping Behavior of 3D Printed Specimens
,”
Polym. Test.
,
109
, p.
107529
.
4.
Nguyen
,
H. T.
,
Crittenden
,
K.
,
Weiss
,
L.
, and
Bardaweel
,
H.
,
2022
, “
Experimental Modal Analysis and Characterization of Additively Manufactured Polymers
,”
Polymers
,
14
(
10
), p.
2071
.
5.
Wang
,
F.
,
Liao
,
J.
,
Huang
,
C.
,
Yu
,
H.
,
Yan
,
J.
, and
Li
,
H.
,
2022
, “
Study on the Damping Dynamics Characteristics of a Viscoelastic Damping Material
,”
Processes
,
10
(
4
), p.
635
.
6.
Mohanty
,
P.
, and
Rixen
,
D. J.
,
2004
, “
A Modified Ibrahim Time Domain Algorithm for Operational Modal Analysis Including Harmonic Excitation
,”
J. Sound Vib.
,
275
(
1–2
), pp.
375
390
.
7.
Malekjafarian
,
A.
,
Brincker
,
R.
,
Ashory
,
M.
, and
Khatibi
,
M.
,
2012
, “
Modified Ibrahim Time Domain Method for Identification of Closely Spaced Modes: Experimental Results
,”
Topics on the Dynamics of Civil Structures, Volume 1: Proceedings of the 30th IMAC, A Conference on Structural Dynamics, 2012
,
Jacksonville, FL
,
Jan. 30–Feb. 2
.
8.
Hamdi
,
S. E.
,
Sbartaï
,
Z. M.
, and
Elachachi
,
S. M.
,
2021
, “
Performance Assessment of Modal Parameters Identification Methods for Timber Structures Evaluation: Numerical Modeling and Case Study
,”
Wood Sci. Technol.
,
55
(
6
), pp.
1593
1618
.
9.
Canales
,
G.
,
Mevel
,
L.
, and
Basseville
,
M.
,
2008
, “
A Polyreference Least Square Complex Frequency Domain Based Statistical Test for Damage Detection
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
4511
4516
.
10.
El-Kafafy
,
M.
,
Guillaume
,
P.
,
Peeters
,
B.
,
Marra
,
F.
, and
Coppotelli
,
G.
,
2012
, “
Advanced Frequency-Domain Modal Analysis for Dealing with Measurement Noise and Parameter Uncertainty
,”
Topics in Modal Analysis I, Volume 5: Proceedings of the 30th IMAC, A Conference on Structural Dynamics, 2012
,
Jacksonville, FL
,
Jan. 30–Feb. 2
.
11.
Saito
,
A.
, and
Kuno
,
T.
,
2020
, “
Data-Driven Experimental Modal Analysis by Dynamic Mode Decomposition
,”
J. Sound Vib.
,
481
, p.
115434
.
12.
Simha
,
C. H. M.
, and
Biglarbegian
,
M.
,
2022
, “
A Note on the Use of Dynamic Mode Decomposition in Mechanics
,”
Mech. Res. Commun.
,
120
, p.
103848
.
13.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
14.
Arbabi
,
Hassan
, and
Mezic
,
Igor
,
2017
, “
Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator
,”
SIAM J. Appl. Dyn. Syst.
,
16
(
4
), pp.
2096
2126
.
15.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.
16.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
2016
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
,
SIAM
,
Philadelphia, PA
.
17.
Williams
,
M. O.
,
Hemati
,
M. S.
,
Dawson
,
S. T.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2016
, “
Extending Data-Driven Koopman Analysis to Actuated Systems
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
704
709
.
18.
Brunton
,
S. L.
,
Brunton
,
B. W.
,
Proctor
,
J. L.
,
Kaiser
,
E.
, and
Kutz
,
J. N.
,
2017
, “
Chaos as an Intermittently Forced Linear System
,”
Nat. Commun.
,
8
(
1
), pp.
19
.
19.
Hong
,
S.
,
Huang
,
G.
,
Yang
,
Y.
, and
Liu
,
Z.
,
2018
, “
Introduction of DMD Method to Study the Dynamic Structures of a Three-Dimensional Centrifugal Compressor With and Without Flow Control
,”
Energies
,
11
(
11
), pp.
3098
.
20.
Yang
,
J.
,
Yan
,
S.
,
Gong
,
Y.
,
Guo
,
Q.
,
Ding
,
L.
, and
Yu
,
G.
,
2023
, “
Application Study of Dynamic Mode Decomposition Coupled With a High-Speed Imaging System in Jet Zone Oscillation Behavior Diagnosis of Impinging Flames
,”
Control Eng. Pract.
,
135
, pp.
105494
.
21.
Tu
,
Jonathan H.
,
Rowley
,
Clarence W.
,
Luchtenburg
,
Dirk M.
,
Brunton
,
Steven L.
, and
Kutz
,
J. Nathan
,
2014
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.
22.
Champion
,
K. P.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
, “
Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings
,”
SIAM J. Appl. Dyn. Syst.
,
18
(
1
), pp.
312
333
.
23.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2022
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
24.
Gavish
,
M.
, and
Donoho
,
D. L.
,
2014
, “
The Optimal Hard Threshold for Singular Values Is
,”
IEEE Trans. Inf. Theory
,
60
(
8
), pp.
5040
5053
.
25.
Snyder
,
G.
, and
Song
,
Z.
,
2021
, “
Koopman Operator Theory for Nonlinear Dynamic Modeling Using Dynamic Mode Decomposition
,” arXiv preprint arXiv:2110.08442.
26.
Otto
,
S. E.
, and
Rowley
,
C. W.
,
2021
, “ “
Koopman Operators for Estimation and Control of Dynamical Systems.” Annual Review of Control
,”
Rob. Auton. Syst.
,
4
(
1
), pp.
59
87
.
27.
Koopman
,
B. O.
,
1931
, “
Hamiltonian Systems and Transformation in Hilbert Space
,”
Proc. Natl. Acad. Sci.
,
17
(
5
), pp.
315
318
.
28.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.
29.
Haseli
,
M.
, and
Cortés
,
J.
,
2023
, “
Generalizing Dynamic Mode Decomposition: Balancing Accuracy and Expressiveness in Koopman Approximations
,”
Automatica
,
153
, p.
111001
.
30.
Li
,
C. Y.
,
Chen
,
Z.
,
Zhang
,
X.
,
Tim
,
K.
, and
Lin
,
C.
,
2023
, “
Koopman Analysis by the Dynamic Mode Decomposition in Wind Engineering
,”
J. Wind Eng. Ind. Aerodyn.
,
232
, pp.
105295
.
31.
Vasconcelos Filho
,
E.
, and
dos Santos
,
P. L.
,
2019
, “
A Dynamic Mode Decomposition Approach With Hankel Blocks to Forecast Multi-Channel Temporal Series
,”
IEEE Control Syst. Lett.
,
3
(
3
), pp.
739
744
.
32.
Anoop
,
M.
,
Senthil
,
P.
, and
Sooraj
,
V.
,
2021
, “
An Investigation on Viscoelastic Characteristics of 3D-Printed FDM Components Using RVE Numerical Analysis
,”
J. Braz. Soc. Mech. Sci.
,
43
(
1
), pp.
1
13
.
33.
Diani
,
J.
,
2020
, “
Free Vibrations of Linear Viscoelastic Polymer Cantilever Beams
,”
C.R. Mec.
,
348
(
10–11
), pp.
797
807
.
34.
Feng
,
J.
,
Fu
,
J.
,
Yao
,
X.
, and
He
,
Y.
,
2022
, “
Triply Periodic Minimal Surface (TPMS) Porous Structures: From Multi-Scale Design, Precise Additive Manufacturing to Multidisciplinary Applications
,”
Int. J. Extreme Manuf.
,
4
(
2
), pp.
022001
.
35.
Sookchanchai
,
K.
,
Promoppatum
,
P.
, and
Uthaisangsuk
,
V.
,
2024
, “
Load-Carrying Capacity of Additively Manufactured Part Using Graded-Topology Infilled Lattices Structures
,”
Mech. Adv. Mater. Struc.
,
31
(
6
), pp.
1313
1331
.
You do not currently have access to this content.