Abstract

Arch and serpentine structures are two fundamental structural forms with significant applications in various fields. When subjected to compressive loading at both ends, these structures undergo flexural-torsional post-buckling, resulting in complex deformation modes that are challenging to describe using basic functions (e.g., trigonometric functions and polynomial functions), posing significant challenges in finding analytical solutions. In this study, we propose a novel approach to address this issue. By representing the lateral displacement with a trigonometric series expansion and utilizing the equilibrium equation, the angular displacement is expressed in terms of special functions known as Mathieu functions. Furthermore, the energy method is employed to obtain analytical solutions for the flexural-torsional post-buckling deformation components. The theoretical findings are validated through experiments and finite element analysis. Based on the theoretical results, explicit analytical expressions for the maximum principal strain and the bending-torsion ratio of the structures are derived, offering valuable insights for the design of arch and serpentine structures in practical applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Yeo
,
W.-H.
,
Kim
,
Y.-S.
,
Lee
,
J.
,
Ameen
,
A.
,
Shi
,
L.
,
Li
,
M.
, and
Wang
,
S.
, et al.,
2013
, “
Multifunctional Epidermal Electronics Printed Directly Onto the Skin
,”
Adv. Mater.
,
25
(
20
), pp.
2773
2778
.
2.
Chen
,
W.
,
Ren
,
X.
,
Wang
,
Q.
, and
Wu
,
J.
,
2019
, “
Tunable Contact of Epidermal Electronics With Skin Based on Ionic Polymer–Metal Composite Material
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061004
.
3.
Li
,
S.
,
Liu
,
G.
,
Li
,
R.
,
Li
,
Q.
,
Zhao
,
Y.
,
Huang
,
M.
, and
Zhang
,
M.
, et al.,
2021
, “
Contact-Resistance-Free Stretchable Strain Sensors With High Repeatability and Linearity
,”
ACS Nano
,
16
(
1
), pp.
541
553
.
4.
Luan
,
H.
,
Zhang
,
Q.
,
Liu
,
T.-L.
,
Wang
,
X.
,
Zhao
,
S.
,
Wang
,
H.
, and
Yao
,
S.
, et al.,
2021
, “
Complex 3D Microfluidic Architectures Formed by Mechanically Guided Compressive Buckling
,”
Sci. Adv.
,
7
(
43
), p.
eabj3686
.
5.
Cai
,
M.
,
Hong
,
W.
,
Nie
,
S.
,
Wang
,
C.
, and
Song
,
J.
,
2022
, “
Stretchable Electronic Skin Patch With Strain Isolation for the Simultaneous Measurements of Surface Electromyography and Temperature
,”
Flex. Print. Electron.
,
7
(
3
), p.
035002
.
6.
Wang
,
Z.
,
Wang
,
H.
,
Liu
,
F.
,
Kang
,
Y.
,
Chen
,
Y.
, and
Feng
,
X.
,
2022
, “
3D Kirigami Antennas With Robust Frequency for Stretchable Wireless Communication
,”
Extreme Mech. Lett.
,
56
, p.
101841
.
7.
Zhao
,
J.
,
Cao
,
H.
, and
Shuai
,
Y.
,
2023
, “
Theoretical Modeling of Vibrations of Mechanically Assembled 3D Serpentine Structures
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071002
.
8.
Jin
,
T.
,
Cheng
,
X.
,
Xu
,
S.
,
Lai
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Deep Learning Aided Inverse Design of the Buckling-Guided Assembly for 3D Frame Structures
,”
J. Mech. Phys. Solids
,
179
, p.
105398
.
9.
Zhang
,
K.
,
Ji
,
J.
,
Huang
,
Y.
,
Song
,
W.-L.
,
Wang
,
H.
,
Wang
,
L.-C.
,
Guo
,
X.
, and
Fang
,
D.
,
2023
, “
Reconfigurable Network Structure With Tunable Multiple Deformation Modes: Mechanical Designs, Theoretical Predictions, and Experimental Demonstrations
,”
Int. J. Solids Struct.
,
260–261
, p.
112043
.
10.
Ye
,
F.
,
Chang
,
J.
, and
Fan
,
Z.
,
2024
, “
Kirigami-Based Inverse Design for 3D Surfaces Formed by Mechanically Guided Method
,”
Thin-Walled Struct.
,
196
, p.
111462
.
11.
Kim
,
D. H.
,
Song
,
J.
,
Choi
,
W. M.
,
Kim
,
H. S.
,
Kim
,
R. H.
,
Liu
,
Z.
,
Huang
,
Y. Y.
,
Hwang
,
K. C.
,
Zhang
,
Y. W.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci. U S A
,
105
(
48
), pp.
18675
18680
.
12.
Kim
,
D. H.
,
Lu
,
N.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Materials for Stretchable Electronics in Bioinspired and Biointegrated Devices
,”
MRS Bull.
,
37
(
3
), pp.
226
235
.
13.
Lee
,
J.
,
Wu
,
J.
,
Ryu
,
J. H.
,
Liu
,
Z.
,
Meitl
,
M.
,
Zhang
,
Y.-W.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2012
, “
Stretchable Semiconductor Technologies With High Areal Coverages and Strain-Limiting Behavior: Demonstration in High-Efficiency Dual-Junction GAINP/GAAS Photovoltaics
,”
Small
,
8
(
12
), pp.
1851
1856
.
14.
Xu
,
S.
,
Zhang
,
Y.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
, and
Fan
,
J. A.
,
2013
, “
Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
(
1
), p.
1543
.
15.
Fan
,
Z.
,
Zhang
,
Y.
,
Ma
,
Q.
,
Zhang
,
F.
,
Fu
,
H.
,
Hwang
,
K.-C.
, and
Huang
,
Y.
,
2016
, “
A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics
,”
Int. J. Solids Struct.
,
91
, pp.
46
54
.
16.
Yang
,
S.
,
Qiao
,
S.
, and
Lu
,
N.
,
2016
, “
Elasticity Solutions to Nonbuckling Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021004
.
17.
Wang
,
C.
,
Cai
,
M.
,
Hao
,
Z.
,
Nie
,
S.
,
Liu
,
C.
,
Du
,
H.
,
Wang
,
J.
,
Chen
,
W.
, and
Song
,
J.
,
2021
, “
Stretchable, Multifunctional Epidermal Sensor Patch for Surface Electromyography and Strain Measurements
,”
Adv. Intell. Syst.
,
3
(
11
), p.
2100031
.
18.
Li
,
Z.
,
Yu
,
C.
,
Qi
,
L.
,
Xing
,
S.
,
Shi
,
Y.
, and
Gao
,
C.
,
2022
, “
Mechanical Behaviors of the Origami-Inspired Horseshoe-Shaped Solar Arrays
,”
Micromachines
,
13
(
5
), p.
732
.
19.
Song
,
H.
,
Luo
,
G.
,
Ji
,
Z.
,
Bo
,
R.
,
Xue
,
Z.
,
Yan
,
D.
, and
Zhang
,
F.
, et al.,
2022
, “
Highly-Integrated, Miniaturized, Stretchable Electronic Systems Based on Stacked Multilayer Network Materials
,”
Sci. Adv.
,
8
(
11
), p.
3785
.
20.
Li
,
J.
,
Wu
,
X.
, and
Su
,
Y.
,
2023
, “
An Overstretch Strategy to Double the Designed Elastic Stretchability of Stretchable Electronics
,”
Adv. Mater.
,
35
(
28
), p.
e2300340
.
21.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K.-I.
,
Huang
,
W.
,
Fu
,
H.
,
Kim
,
J.
, and
Wei
,
Z.
, et al.,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
22.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M.
,
Ou
,
D.
,
Liu
,
Y.
, and
Lin
,
Q.
, et al.,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
.
23.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nature Rev. Mater.
,
2
(
4
), pp.
1
17
.
24.
Shi
,
Y.
,
Pei
,
P.
,
Cheng
,
X.
,
Yan
,
Z.
,
Han
,
M.
,
Li
,
Z.
,
Gao
,
C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
An Analytic Model of Two-Level Compressive Buckling With Applications in the Assembly of Free-Standing 3D Mesostructures
,”
Soft Matter
,
14
, pp.
8828
8837
.
25.
Guo
,
X.
,
Wang
,
X.
,
Ou
,
D.
,
Ye
,
J.
,
Pang
,
W.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Zhang
,
Y.
,
2018
, “
Controlled Mechanical Assembly of Complex 3D Mesostructures and Strain Sensors by Tensile Buckling
,”
npj Flexible Elect ron.
,
2
(
1
), p.
14
.
26.
Wang
,
H.
,
Ning
,
X.
,
Li
,
H.
,
Luan
,
H.
,
Xue
,
Y.
,
Yu
,
X.
, and
Fan
,
Z.
, et al.,
2018
, “
Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling
,”
J. Mech. Phys. Solids
,
112
, pp.
187
208
.
27.
Pang
,
W.
,
Cheng
,
X.
,
Zhao
,
H.
,
Guo
,
X.
,
Ji
,
Z.
,
Li
,
G.
, and
Liang
,
Y.
, et al.,
2020
, “
Electro-Mechanically Controlled Assembly of Reconfigurable 3D Mesostructures and Electronic Devices Based on Dielectric Elastomer Platforms
,”
Natl. Sci. Rev.
,
7
(
2
), pp.
342
354
.
28.
Xue
,
Z.
,
Jin
,
T.
,
Xu
,
S.
,
Bai
,
K.
,
He
,
Q.
,
Zhang
,
F.
, and
Cheng
,
X.
, et al.,
2022
, “
Assembly of Complex 3D Structures and Electronics on Curved Surfaces
,”
Sci. Adv.
,
8
(
31
), p.
eabm6922
.
29.
Shuai
,
Y.
,
Zhao
,
J.
,
Bo
,
R.
,
Lan
,
Y.
,
Lv
,
Z.
, and
Zhang
,
Y.
,
2023
, “
A Wrinkling-Assisted Strategy for Controlled Interface Delamination in Mechanically-Guided 3D Assembly
,”
J. Mech. Phys. Solids
,
173
, p.
105203
.
30.
Cheng
,
X.
,
Fan
,
Z.
,
Yao
,
S.
,
Jin
,
T.
,
Lv
,
Z.
,
Lan
,
Y.
, and
Bo
,
R.
, et al.,
2023
, “
Programming 3D Curved Mesosurfaces Using Microlattice Designs
,”
Science
,
379
(
6638
), pp.
1225
1232
.
31.
Timoshenko
,
S. P.
,
Gere
,
J. M.
, and
Prager
,
W.
,
1961
,
Theory of Elastic Stability
, 2nd ed., Vol.
29
,
McGraw-Hill
,
New York
.
32.
Budiansky
,
B.
,
1974
, “
Theory of Buckling and Post-Buckling Behavior of Elastic Structures
,”
Adv. Appl. Mech.
,
14
, pp.
1
65
.
33.
Carrier
,
G. F.
,
1947
, “
On the Buckling of Elastic Rings
,”
J. Math. Phys.
,
26
(
1–4
), pp.
94
103
.
34.
Van der Heijden
,
A. M.
,
2008
,
W. T. Koiter’s Elastic Stability of Solids and Structures
,
Cambridge University Press
,
Cambridge, UK
.
35.
Liu
,
L.
, and
Lu
,
N.
,
2016
, “
Variational Formulations, Instabilities and Critical Loadings of Space Curved Beams
,”
Int. J. Solids Struct.
,
87
, pp.
48
60
.
36.
Fan
,
Z.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Double Perturbation Method of Postbuckling Analysis in 2D Curved Beams for Assembly of 3D Ribbon-Shaped Structures
,”
J. Mech. Phys. Solids
,
111
, pp.
215
238
.
37.
Liu
,
Y.
,
Yan
,
Z.
,
Lin
,
Q.
,
Guo
,
X.
,
Han
,
M.
,
Nan
,
K.
,
Hwang
,
K.-C.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2016
, “
Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation
,”
Adv. Funct. Mater.
,
26
(
17
), pp.
2909
2918
.
38.
Pi
,
Y. L.
, and
Bradford
,
M. A.
,
2002
, “
Elastic Flexural-Torsional Buckling of Continuously Restrained Arches
,”
Int. J. Solids Struct.
,
39
(
8
), pp.
2299
2322
.
39.
Trahair
,
N. S.
, and
Papangelis
,
J. P.
,
1987
, “
Flexural-Torsional Buckling of Monosymmetric Arches
,”
J. Struct. Eng.
,
113
(
10
), pp.
2271
2288
.
40.
Wu
,
J.
,
Liu
,
Z. J.
,
Song
,
J.
,
Huang
,
Y.
,
Hwang
,
K.-C.
,
Zhang
,
Y. W.
, and
Rogers
,
J. A.
,
2011
, “
Stretchability of Encapsulated Electronics
,”
Appl. Phys. Lett.
99
(
6
), p.
061911
.
41.
Kumar
,
A.
,
Handral
,
P.
,
Bhandari
,
C. D.
,
Karmakar
,
A.
, and
Rangarajan
,
R.
,
2020
, “
An Investigation of Models for Elastic Ribbons: Simulations & Experiments
,”
J. Mech. Phys. Solids
,
143
, p.
104070
.
42.
Feng
,
P.
,
Yuan
,
J.
,
Huang
,
Y.
, and
Li
,
X.
,
2020
, “
Analytical Solutions for the Lateral-Torsional Buckling of Serpentine Interconnects in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081005
.
43.
Zhao
,
J.
,
2022
, “
Postbuckling Analysis of Ultra-Low Rigidity Serpentine Structures
,”
ASME J. Appl. Mech.
,
89
(
4
), p.
041008
.
44.
Fraternali
,
F.
,
Spadea
,
S.
, and
Ascione
,
L.
,
2013
, “
Buckling Behavior of Curved Composite Beams With Different Elastic Response in Tension and Compression
,”
Composite Struct.
,
100
, pp.
280
289
.
45.
Zare
,
M.
, and
Asnafi
,
A.
,
2019
, “
Nonlinear Pre and Post-Buckled Analysis of Curved Beams Using Differential Quadrature Element Method
,”
Int. J. Mech. Mater. Eng.
,
14
(
1
), pp.
1
10
.
46.
Dias
,
M. A.
, and
Audoly
,
B.
,
2015
, “
‘Wunderlich, Meet Kirchhoff’: A General and Unified Description of Elastic Ribbons and Thin Rods
,”
J. Elasticity
,
119
(
1
), pp.
49
66
.
47.
Fan
,
Z.
,
Wu
,
J.
,
Ma
,
Q.
,
Liu
,
Y.
,
Su
,
Y.
, and
Hwang
,
K.-C.
,
2017
, “
Post-Buckling Analysis of Curved Beams
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031007
.
48.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2014
,
Table of Integrals, Series, and Products
,
Academic Press
,
Burlington, MA
.
You do not currently have access to this content.