Abstract
Two closed-form methods to solve the continuous-time algebraic Riccati equation (CARE) for second-order systems in terms of the mass, damping, and stiffness matrices are presented. One method utilizes the modal transformation of mass and stiffness matrices, and the other does not require this transformation. Hundreds of high-dimensional second-order systems are used to show that these methods achieve similar or better accuracy compared to the state-of-the-art, while significantly reducing the computation time. Furthermore, advantages of these methods are illustrated in vibration control problems.
Issue Section:
Research Papers
Graphical Abstract Figure
Issue Section:
Research Papers
References
1.
Zhou
, K.
, and Doyle
, J. C.
, 1998
, Essentials of Robust Control
, Vol. 104, Prentice Hall
, Upper Saddle River, NJ
.2.
Skogestad
, S.
, and Postlethwaite
, I.
, 2005
, Multivariable Feedback Control: Analysis and Design
, John Wiley & Sons
, Hoboken, NJ
.3.
Bogdanov
, A.
, and Wan
, E.
, 2007
, “State-Dependent Riccati Equation Control for Small Autonomous Helicopters
,” J. Guidance Control Dyn.
, 30
(1
), pp. 47
–60
. 4.
Rinaldi
, F.
, Chiesa
, S.
, and Quagliotti
, F.
, 2013
, “Linear Quadratic Control for Quadrotors UAVs Dynamics and Formation Flight
,” J. Intell. Robot. Syst.
, 70
(1
), pp. 203
–220
. 5.
Starin
, S.
, Sparks
, A.
, and Yedavalli
, R.
, 2001
, “Spacecraft Formation Flying Maneuvers Using Linear-Quadratic Regulation With No Radial Axis Inputs
,” AIAA Guidance, Navigation, and Control Conference and Exhibit
, Montreal, Canada
, Aug. 6–9
, p. 4029
.6.
Eastep
, F.
, Khot
, N.
, and Grandhi
, R.
, 1987
, “Improving the Active Vibrational Control of Large Space Structures Through Structural Modifications
,” Acta Astronaut.
, 15
(6–7
), pp. 383
–389
. 7.
Ebrahim
, O.
, Salem
, M.
, Jain
, P.
, and Badr
, M.
, 2010
, “Application of Linear Quadratic Regulator Theory to the Stator Field-Oriented Control of Induction Motors
,” IET Electric Power Appl.
, 4
(8
), pp. 637
–646
. 8.
Laub
, A.
, 1979
, “A Schur Method for Solving Algebraic Riccati Equations
,” IEEE Trans. Automat. Contr.
, 24
(6
), pp. 913
–921
. 9.
Morris
, K.
, and Navasca
, C.
, 2004
, “Solution of Algebraic Riccati Equations Arising in Control of Partial Differential Equations,” Control and Boundary Analysis
, J. P.
Zolesio
, and J.
Cagnol
, eds., CRC Press
, Boca Raton, FL
.10.
Banks
, H.
, and Ito
, K.
, 1991
, “A Numerical Algorithm for Optimal Feedback Gains in High Dimensional Linear Quadratic Regulator Problems
,” SIAM J. Control Optim.
, 29
(3
), pp. 499
–515
. 11.
Meirovitch
, L.
, Baruh
, H.
, and Oz
, H.
, 1983
, “A Comparison of Control Techniques for Large Flexible Systems
,” J. Guidance Control Dyn.
, 6
(4
), pp. 302
–310
. 12.
O’Donoghue
, P.
, and Atluri
, S.
, 1986
, “Control of Dynamic Response of a Continuum Model of a Large Space Structure
,” Comput. Struct.
, 23
(2
), pp. 199
–209
.13.
Chahlaoui
, Y.
, Lemonnier
, D.
, Vandendorpe
, A.
, and Van Dooren
, P.
, 2006
, “Second-Order Balanced Truncation
,” Linear Algebra Appl.
, 415
(2–3
), pp. 373
–384
. 14.
Zhao
, M.
, Anzai
, T.
, Shi
, F.
, Chen
, X.
, Okada
, K.
, and Inaba
, M.
, 2018
, “Design, Modeling, and Control of an Aerial Robot Dragon: A Dual-Rotor-Embedded Multilink Robot with the Ability of Multi-Degree-of-Freedom Aerial Transformation
,” IEEE Rob. Autom. Lett.
, 3
(2
), pp. 1176
–1183
. 15.
Hamdan
, A.
, and Nayfeh
, A.
, 1989
, “Measures of Modal Controllability and Observability for First- and Second-Order Linear Systems
,” J. Guidance Control Dyn.
, 12
(3
), pp. 421
–428
. 16.
Hughes
, P. C.
, and Skelton
, R. E.
, 1980
, “Controllability and Observability of Linear Matrix-Second-Order Systems
,” J. Appl. Mech.
, 47
(2
), pp. 415
–420
. 17.
Skelton
, R. E.
, 1988
, Dynamic Systems Control: Linear Systems Analysis and Synthesis
, John Wiley & Sons, Inc.
, Hoboken, NJ
.18.
Belvin
, W. K.
, and Park
, K. C.
, 1990
, “Structural Tailoring and Feedback Control Synthesis—An Interdisciplinary Approach
,” J. Guidance Control Dyn.
, 13
(3
), pp. 424
–429
. 19.
Hanks
, B.
, and Skelton
, R.
, 1991
, “Closed-Form Solutions for Linear Regulator-Design of Mechanical Systems Including Optimal Weighting Matrix Selection
,” Structures, Structural Dynamics, and Materials Conference
, Baltimore, MD
, Apr. 8–10
, p. 1117
.20.
Koujitani
, K.
, Ikeda
, M.
, and Kida
, T.
, 1989
, “Optimal Control of Large Space Structures by Collocated Feedback
,” Trans. Soc. Instrum. Control Eng.
, 25
(8
), pp. 882
–888
. 21.
Sultan
, C.
, 2022
, “Decoupling of Second Order Systems Via Linear Time-Invariant Transformations
,” Mech. Syst. Signal Process.
, 169
, p. 108295
. 22.
Liu
, H.
, Zhang
, J.
, and Zhao
, W.
, 2017
, “An Intelligent Non-collocated Control Strategy for Ball-Screw Feed Drives With Dynamic Variations
,” Engineering
, 3
(5
), pp. 641
–647
. 23.
MATLAB
, R2019
, “Implicit Solver for Continuous-Time Algebraic Riccati Equations (ICARE),” Version. https://www.mathworks.com/help/control/ref/icare.html.24.
Crone
, L.
, 1981
, “Second Order Adjoint Matrix Equations
,” Linear Algebra Appl.
, 39
, pp. 61
–71
. 25.
Invernizzi
, D.
, Giurato
, M.
, Gattazzo
, P.
, and Lovera
, M.
, 2021
, “Comparison of Control Methods for Trajectory Tracking in Fully Actuated Unmanned Aerial Vehicles
,” IEEE Trans. Control Syst. Technol.
, 29
(3
), pp. 1147
–1160
. 26.
Xiang
, X.
, Lapierre
, L.
, and Jouvencel
, B.
, 2015
, “Smooth Transition of AUV Motion Control: From Fully-Actuated to Under-Actuated Configuration
,” Rob. Auton. Syst.
, 67
, pp. 14
–22
. 27.
Mahtout
, I.
, Navas
, F.
, Milanés
, V.
, and Nashashibi
, F.
, 2020
, “Advances in Youla-Kucera Parametrization: A Review
,” Ann. Rev. Control
, 49
, pp. 81
–94
. 28.
Suresh
, L.
, and Mini
, K.
, 2019
, “Effect of Multiple Tuned Mass Dampers for Vibration Control in High-Rise Buildings
,” Practice Periodical on Structural Design and Construction, Vol. 24
, No. 4
.29.
Zuo
, H.
, Bi
, K.
, and Hao
, H.
, 2017
, “Using Multiple Tuned Mass Dampers to Control Offshore Wind Turbine Vibrations Under Multiple Hazards
,” Eng. Struct.
, 141
, pp. 303
–315
. Copyright © 2024 by ASME
You do not currently have access to this content.