Abstract

Two closed-form methods to solve the continuous-time algebraic Riccati equation (CARE) for second-order systems in terms of the mass, damping, and stiffness matrices are presented. One method utilizes the modal transformation of mass and stiffness matrices, and the other does not require this transformation. Hundreds of high-dimensional second-order systems are used to show that these methods achieve similar or better accuracy compared to the state-of-the-art, while significantly reducing the computation time. Furthermore, advantages of these methods are illustrated in vibration control problems.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
, Vol. 104,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control: Analysis and Design
,
John Wiley & Sons
,
Hoboken, NJ
.
3.
Bogdanov
,
A.
, and
Wan
,
E.
,
2007
, “
State-Dependent Riccati Equation Control for Small Autonomous Helicopters
,”
J. Guidance Control Dyn.
,
30
(
1
), pp.
47
60
.
4.
Rinaldi
,
F.
,
Chiesa
,
S.
, and
Quagliotti
,
F.
,
2013
, “
Linear Quadratic Control for Quadrotors UAVs Dynamics and Formation Flight
,”
J. Intell. Robot. Syst.
,
70
(
1
), pp.
203
220
.
5.
Starin
,
S.
,
Sparks
,
A.
, and
Yedavalli
,
R.
,
2001
, “
Spacecraft Formation Flying Maneuvers Using Linear-Quadratic Regulation With No Radial Axis Inputs
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
,
Montreal, Canada
,
Aug. 6–9
, p.
4029
.
6.
Eastep
,
F.
,
Khot
,
N.
, and
Grandhi
,
R.
,
1987
, “
Improving the Active Vibrational Control of Large Space Structures Through Structural Modifications
,”
Acta Astronaut.
,
15
(
6–7
), pp.
383
389
.
7.
Ebrahim
,
O.
,
Salem
,
M.
,
Jain
,
P.
, and
Badr
,
M.
,
2010
, “
Application of Linear Quadratic Regulator Theory to the Stator Field-Oriented Control of Induction Motors
,”
IET Electric Power Appl.
,
4
(
8
), pp.
637
646
.
8.
Laub
,
A.
,
1979
, “
A Schur Method for Solving Algebraic Riccati Equations
,”
IEEE Trans. Automat. Contr.
,
24
(
6
), pp.
913
921
.
9.
Morris
,
K.
, and
Navasca
,
C.
,
2004
, “Solution of Algebraic Riccati Equations Arising in Control of Partial Differential Equations,”
Control and Boundary Analysis
,
J. P.
Zolesio
, and
J.
Cagnol
, eds.,
CRC Press
,
Boca Raton, FL
.
10.
Banks
,
H.
, and
Ito
,
K.
,
1991
, “
A Numerical Algorithm for Optimal Feedback Gains in High Dimensional Linear Quadratic Regulator Problems
,”
SIAM J. Control Optim.
,
29
(
3
), pp.
499
515
.
11.
Meirovitch
,
L.
,
Baruh
,
H.
, and
Oz
,
H.
,
1983
, “
A Comparison of Control Techniques for Large Flexible Systems
,”
J. Guidance Control Dyn.
,
6
(
4
), pp.
302
310
.
12.
O’Donoghue
,
P.
, and
Atluri
,
S.
,
1986
, “
Control of Dynamic Response of a Continuum Model of a Large Space Structure
,”
Comput. Struct.
,
23
(
2
), pp.
199
209
.
13.
Chahlaoui
,
Y.
,
Lemonnier
,
D.
,
Vandendorpe
,
A.
, and
Van Dooren
,
P.
,
2006
, “
Second-Order Balanced Truncation
,”
Linear Algebra Appl.
,
415
(
2–3
), pp.
373
384
.
14.
Zhao
,
M.
,
Anzai
,
T.
,
Shi
,
F.
,
Chen
,
X.
,
Okada
,
K.
, and
Inaba
,
M.
,
2018
, “
Design, Modeling, and Control of an Aerial Robot Dragon: A Dual-Rotor-Embedded Multilink Robot with the Ability of Multi-Degree-of-Freedom Aerial Transformation
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
1176
1183
.
15.
Hamdan
,
A.
, and
Nayfeh
,
A.
,
1989
, “
Measures of Modal Controllability and Observability for First- and Second-Order Linear Systems
,”
J. Guidance Control Dyn.
,
12
(
3
), pp.
421
428
.
16.
Hughes
,
P. C.
, and
Skelton
,
R. E.
,
1980
, “
Controllability and Observability of Linear Matrix-Second-Order Systems
,”
J. Appl. Mech.
,
47
(
2
), pp.
415
420
.
17.
Skelton
,
R. E.
,
1988
,
Dynamic Systems Control: Linear Systems Analysis and Synthesis
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
18.
Belvin
,
W. K.
, and
Park
,
K. C.
,
1990
, “
Structural Tailoring and Feedback Control Synthesis—An Interdisciplinary Approach
,”
J. Guidance Control Dyn.
,
13
(
3
), pp.
424
429
.
19.
Hanks
,
B.
, and
Skelton
,
R.
,
1991
, “
Closed-Form Solutions for Linear Regulator-Design of Mechanical Systems Including Optimal Weighting Matrix Selection
,”
Structures, Structural Dynamics, and Materials Conference
,
Baltimore, MD
,
Apr. 8–10
, p.
1117
.
20.
Koujitani
,
K.
,
Ikeda
,
M.
, and
Kida
,
T.
,
1989
, “
Optimal Control of Large Space Structures by Collocated Feedback
,”
Trans. Soc. Instrum. Control Eng.
,
25
(
8
), pp.
882
888
.
21.
Sultan
,
C.
,
2022
, “
Decoupling of Second Order Systems Via Linear Time-Invariant Transformations
,”
Mech. Syst. Signal Process.
,
169
, p.
108295
.
22.
Liu
,
H.
,
Zhang
,
J.
, and
Zhao
,
W.
,
2017
, “
An Intelligent Non-collocated Control Strategy for Ball-Screw Feed Drives With Dynamic Variations
,”
Engineering
,
3
(
5
), pp.
641
647
.
23.
MATLAB
,
R2019
, “Implicit Solver for Continuous-Time Algebraic Riccati Equations (ICARE),” Version. https://www.mathworks.com/help/control/ref/icare.html.
24.
Crone
,
L.
,
1981
, “
Second Order Adjoint Matrix Equations
,”
Linear Algebra Appl.
,
39
, pp.
61
71
.
25.
Invernizzi
,
D.
,
Giurato
,
M.
,
Gattazzo
,
P.
, and
Lovera
,
M.
,
2021
, “
Comparison of Control Methods for Trajectory Tracking in Fully Actuated Unmanned Aerial Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
29
(
3
), pp.
1147
1160
.
26.
Xiang
,
X.
,
Lapierre
,
L.
, and
Jouvencel
,
B.
,
2015
, “
Smooth Transition of AUV Motion Control: From Fully-Actuated to Under-Actuated Configuration
,”
Rob. Auton. Syst.
,
67
, pp.
14
22
.
27.
Mahtout
,
I.
,
Navas
,
F.
,
Milanés
,
V.
, and
Nashashibi
,
F.
,
2020
, “
Advances in Youla-Kucera Parametrization: A Review
,”
Ann. Rev. Control
,
49
, pp.
81
94
.
28.
Suresh
,
L.
, and
Mini
,
K.
,
2019
, “
Effect of Multiple Tuned Mass Dampers for Vibration Control in High-Rise Buildings
,” Practice Periodical on Structural Design and Construction, Vol.
24
, No.
4
.
29.
Zuo
,
H.
,
Bi
,
K.
, and
Hao
,
H.
,
2017
, “
Using Multiple Tuned Mass Dampers to Control Offshore Wind Turbine Vibrations Under Multiple Hazards
,”
Eng. Struct.
,
141
, pp.
303
315
.
You do not currently have access to this content.